

Copyright © 2023 by KNIME Press

All rights reserved. This publication is protected by copyright, and permission must be

obtained from the publisher prior to any prohibited reproduction, storage in a retrieval

system, or transmission in any form or by any means, electronic, mechanical,

photocopying, recording or likewise.

This book has been updated for KNIME 5.1.

For information regarding permissions and sales, write to:

KNIME Press

Talacker 50

8001 Zurich

Switzerland

knimepress@knime.com

www.knime.com

mailto:knimepress@knime.com
http://www.knime.com/

Preface

Machine learning models can automate different kinds of processes → prove

customer credit worthiness, flag emails as spam, detect fraudulent transactions,

forecast weather, optimize the electricity supply, and more! The overarching goal of all

these applications is to have accurate predictions. But how do we define “accurate”?

We can quantify the accuracy from different perspectives with scoring metrics, such

as overall accuracy, area under the ROC curve, sensitivity and specificity.

In general, scoring metrics have two functions in the model building process: First, they

provide objective values to optimize model parameters and compare models. And

second, they tell the expected accuracy of the model in production data. Careful data

preparation, model selection and configuration can make a difference between the

first - accuracy of validation data - and the second- expected accuracy of production

data. So, it is worth to run a few rounds in the data science creation cycle to then be

able to move happily into the production cycle!

In this booklet, we provide an overview of scoring metrics to evaluate a classification

and regression model. We begin with an introduction to the confusion matrix and class

statistics, numeric scoring metrics and visual scoring techniques. We then take a look

at a special situation that occurs frequently in practice, namely, imbalanced target

classes. We apply resampling to imbalanced data and correct the prediction results

for bias, we explain why Cohen’s kappa works better than overall accuracy for

imbalanced data, and we investigate why resampling might fail for highly imbalanced

data. Finally, we take a look at a few examples of interpreting the model results. Here,

we check how much profit a credit scoring model generates in terms of money and

how we can interpret the coefficients of a logistic regression model as percentage

effects.

We wish you insightful reading!

Maarit Widmann & Alfredo Roccato

iii

Table of Contents

CONFUSION MATRIX AND CLASS STATISTICS 1

EMAIL CLASSIFICATION: SPAM VS. USEFUL 1

CONFUSION MATRIX 3

MEASURES FOR CLASS STATISTICS 3

MULTIVARIATE CLASSIFICATION MODEL 5

SUMMARY 7

NUMERIC SCORING METRICS 8

QUANTITATIVE DATA HAVE ENDLESS STORIES TO TELL! 8

WHY ARE NUMERIC SCORING METRICS NEEDED? 8

FIVE METRICS – FIVE DIFFERENT PERSPECTIVES ON PREDICTION ACCURACY 9

A REVIEW OF THE FIVE NUMERIC SCORING METRICS 13

SUMMARY 14

VISUAL SCORING TECHNIQUES FOR CLASSIFICATION MODELS 15

USE CASE: CHURN PREDICTION MODEL 15

COMPARING PERFORMANCES ACROSS CLASSIFICATION THRESHOLDS 16

COMPARING MULTIPLE MODELS 19

SAVING RESOURCES WITH A MODEL 19

VISUAL MODEL EVALUATION TECHNIQUES – SUMMARY 22

TIPS AND TRICKS 23

CORRECTING PREDICTED CLASS PROBABILITIES IN IMBALANCED DATASETS 25

CLASSIFICATION ON IMBALANCED DATASETS 25

RESAMPLING TO BALANCE DATASETS 26

CORRECTING PREDICTED CLASS PROBABILITIES 26

EXAMPLE: FRAUD DETECTION 27

SUMMARY 31

Table of Contents

iv

COHEN’S KAPPA 33

AN ALTERNATIVE FOR WHEN OVERALL ACCURACY IS BIASED, YET NOT TRUSTING THE STATISTICS

BLINDLY 33

MEASURE PERFORMANCE IMPROVEMENT ON IMBALANCED DATASETS 34

COHEN’S KAPPA 36

PAIN POINTS OF COHEN’S KAPPA 36

SUMMARY 39

EXAMPLE WORKFLOW: COHEN'S KAPPA FOR EVALUATING CLASSIFICATION MODELS 40

RESAMPLING IMBALANCED DATA LIMITS 41

BUILDING A CLASSIFICATION MODEL FOR FRAUD DETECTION 42

RESAMPLING TECHNIQUES 43

EFFECTS OF RESAMPLING ON FRAUD DETECTION PERFORMANCE 44

DEMONSTRATING OVER- AND UNDERFITTING IN FRAUD DETECTION 45

DIAGNOSING PROBLEMS OF RESAMPLING IN FRAUD DETECTION 47

CONCLUSIONS 48

FINDING AN OPTIMAL CLASSIFICATION THRESHOLD BASED ON COST AND

PROFIT 50

PENALIZING AND REWARDING CLASSIFICATION RESULTS WITH A PROFIT MATRIX 50

FROM MODEL ACCURACY TO EXPECTED PROFIT 51

RESULTS 55

EASY INTERPRETATION OF A LOGISTIC REGRESSION MODEL WITH DELTA-P

STATISTICS 57

KEY TAKEAWAYS 57

ASSESSING THE EFFECT OF A SINGLE PREDICTOR WITH THE DELTA-P STATISTICS 58

CONCLUSIONS 63

TOPIC INDEX 64

1

Confusion Matrix and Class Statistics

Wheeling like a Hamster in the Data Science Cycle

Author: Maarit Widmann

Workflow on KNIME Community Hub: Evaluating Classification Model Performance

Model evaluation – or model scoring - is an important part of a data science project

and it’s exactly this part that quantifies how good your model is, how much it has

improved from the previous version, how much better it is than your colleague’s model,

and how much room for improvement there still is.

In this article we talk about the confusion matrix — a compact representation of the

model performance, and the source of many scoring metrics for classification models.

A classification model predicts two or more known classes, for example, customer

churn/no churn, spam/normal email, red/white wine, or malignant/benign tumor. The

confusion matrix shows the distribution of actual and predicted classes, and it is the

starting point in evaluating a classification model of any nature. The classes can be

equally important, for example, when classifying wines to red and white. Or, predicting

one class correctly can be more important, for example, when trying to find the

malignant tumors. In the latter case we’re often dealing with imbalanced data and

trying to predict the minority class correctly.

Email classification: Spam vs. Useful

Let’s take the case of the email classification problem. The goal is to classify incoming

emails in two classes: spam vs. useful (“normal”) email. For that, we use

the Spambase Data Set provided by UCI Machine Learning Repository. This dataset

contains 4601 emails described through 57 features, such as text length and presence

of specific words like “buy”, “subscribe”, and “win”. The “Spam” column provides two

possible labels for the emails: “spam” (1) and “normal” (0).

The figure below shows a workflow that covers the steps to build a classification

model: reading and preprocessing the data, partitioning into a training set and a test

set, training the model, making predictions by the model, and evaluating the prediction

results.

https://kni.me/w/wWrebA_HNv4hHDDG
https://hub.knime.com/search?q=model%20evaluation
https://archive.ics.uci.edu/ml/datasets/spambase
https://archive.ics.uci.edu/ml/index.php

Confusion Matrix and Class Statistics

2

The last step, model scoring, is based on comparing the actual and predicted target

column values in the test set. The whole scoring process of a model consists of a

match count: how many data rows have been correctly classified and how many data

rows have been incorrectly classified by the model. These counts are summarized in

the confusion matrix and class statistics and displayed in the interactive view of the

Scorer (JavaScript) node shown in the figure below:

By looking at the confusion matrix we can see the performance of the model in

absolute numbers, for example, how many of the actual spam emails were predicted

as spam. On the other hand, a number of class statistics and overall accuracy

statistics, which show the performance of the model as relative measures, are

calculated based on the numbers in the confusion matrix.

Let’s see now exactly what these numbers in a confusion matrix are.

This workflow, Evaluating Classification Model Performance, is building, applying, and evaluating a

supervised classification model that classifies incoming emails as spam or useful. Download it from the

KNIME Community Hub.

Confusion matrix and class statistics in the interactive view of the Scorer (JavaScript) node.

https://kni.me/w/wWrebA_HNv4hHDDG

Confusion Matrix and Class Statistics

3

Confusion Matrix

The confusion matrix was initially introduced to evaluate results from binomial

classification. Thus, the first thing to do is to take one of the two classes as the class

of interest, i.e., the positive class. In the target column, we need to choose (arbitrarily)

one value as the positive class. The other value is then automatically considered the

negative class. Keep in mind that the class statistics will show different values if we

change the positive class. Here we chose the spam emails as the positive class and

the normal emails as the negative class, which produces the confusion matrix shown

in the following table:

The confusion matrix reports the count of:

• Spam emails classified correctly as spam (the positive class). These are called

True Positives (TP). The number of true positives is placed in the top left cell of

the confusion matrix.

• Spam emails classified incorrectly as normal (the negative class). These are

called False Negatives (FN). The number of false negatives is placed in the top

right cell of the confusion matrix.

• Normal emails classified incorrectly as spam. These are called False Positives

(FP). The number of false positives is placed in the lower left cell of the confusion

matrix.

• Normal emails classified correctly as normal. These are called True Negatives

(TN). The number of true negatives is placed in the lower right cell of the

confusion matrix.

Therefore, the correct predictions are on the diagonal with a gray background; the

incorrect predictions are on the diagonal with a white background.

In the next section, using the four counts in the confusion matrix, we can calculate a

few class statistics measures to quantify the model performance.

Measures for Class Statistics

The class statistics, as the name implies, summarizes the model performance for the

positive and negative classes separately. This is the reason why their values and

interpretation change with a different definition of the positive class and why they are

A confusion matrix showing actual and predicted positive and

negative classes in the test set.

Confusion Matrix and Class Statistics

4

often expressed in pairs: sensitivity & specificity and recall & precision. These pairs of

statistics provide a more comprehensive view of the model’s performance.

Notice that both pairs of statistics are characterized by an inverse relationship:

improving one often happens with the cost of reducing the other. For example, if we

use a stricter spam filter, we’ll reduce the number of dangerous emails in the inbox but

increase the number of normal emails that have to be collected from the spam box

folder afterwards.

Sensitivity and Specificity

The table below shows the formulas to calculate sensitivity and specificity based on

the counts in the confusion matrix:

Sensitivity measures the model’s prediction performance for the positive class. So,

given that spam emails are the positive class, sensitivity quantifies which proportion

of the actual spam emails are correctly predicted as spam.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

320

320+43
= 0.882

We divide the number of true positives by the number of all positive events in the

dataset: the positive class events predicted correctly (TP) and the positive class events

predicted incorrectly (FN). The model in this example reaches the sensitivity value of

0.882. This means that about 88% of the spam emails in the dataset were correctly

predicted as spam.

Specificity measures the model’s prediction performance for the negative class, so

which proportion of the actual normal emails are correctly predicted as normal.

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
=

538

20+538
= 0.964

We divide the number of true negatives by the number of all negative events in the

dataset: the negative class events predicted incorrectly (FP), and the negative class

events predicted correctly (TN). The model reaches the specificity value of 0.964, so

less than 4% of all normal emails are predicted incorrectly as spam.

Sensitivity and specificity values and their formulas, which are based on the counts in the

confusion matrix.

Confusion Matrix and Class Statistics

5

Recall, Precision, and F-Measure

The following table shows the formulas to calculate recall and precision based on the

counts in the confusion matrix:

Similarly to sensitivity, recall measures the prediction performance for the positive

class. Therefore, the formula for recall is the same as for sensitivity.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
=

320

320+43
= 0.882

Precision measures the prediction performance of the positive class. That is, which

proportion of the predicted spam emails are actually spam emails.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
=

320

320+20
= 0.941

We divide the number of true positives by the number of all events assigned to the

positive class, i.e., the sum of true positives and false positives. The precision value

for the model is 0.941. Therefore, almost 95% of the emails predicted as spam were

actually spam emails.

Recall and precision can also be reported by one measure that combines them. One

example is called F-measure, which is the harmonic mean of recall and precision:

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑟𝑒𝑐𝑎𝑙𝑙∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
= 2 ∗

0.882∗0.941

0.882+0.941
= 0.910

In the next section, we introduce the confusion matrix for a multinomial classification

model.

Multivariate Classification Model

In case of a multinomial classification model, the target column has three or more

values. The emails could be labeled as “spam”, “ad”, and “normal”, for example.

Recall and precision values and their formulas, which are based on the counts in the

confusion matrix.

Confusion Matrix and Class Statistics

6

Similarly to a binomial classification model, the target class values are assigned to the

positive and the negative class. The difference is that multiple classes must be

assigned the same label, positive or negative. Here we define spam as the positive

class and the normal and ad emails as the negative class. Now, the confusion matrix

looks as shown in the table below:

To calculate the class statistics, we have to re-define the true positives, false

negatives, false positives, and true negatives using the values in a multivariate

confusion matrix:

• The cell identified by the row and column for the positive class contains the True

Positives, i.e., where the actual and predicted class is spam.

• Cells identified by the row for the positive class and columns for the negative

class contain the False Negatives, where the actual class is spam, and the

predicted class is normal or ad.

• Cells identified by rows for the negative class and the column for the positive

class contain the False Positives, where the actual class is normal or ad, and the

predicted class is spam.

• Cells outside the row and column for the positive class contain the True

Negatives, where the actual class is ad or normal, and the predicted class is ad

or normal. An incorrect prediction inside the negative class is still considered as

a true negative.

Now, these four statistics can be used to calculate class statistics using the formulas

introduced in the previous section.

Confusion matrix showing the distribution of predictions to true

positives, false negatives, false positives, and true negatives for a

multinomial classification model (3 classes).

Confusion Matrix and Class Statistics

7

Summary

In this article, we’ve shown how to evaluate a classification model with the confusion

matrix and class statistics. The confusion matrix lays the first stone in the evaluation

of a classification model by showing the counts of correct and incorrect predictions

into the target classes. The class statistics, such as sensitivity and specificity, recall

and precision, and the F-measure, are calculated based on these counts.

Confusion matrix and class statistics have been defined for binomial classification

problems. However, we have shown how they can be easily extended to address

multinomial classification problems.

8

Numeric Scoring Metrics

Find the Right Metric for a Prediction Model

Author: Maarit Widmann

Workflows on KNIME Community Hub: Evaluating the Performance of a Regression Model and Forecasting

and Reconstructing Time Series

Quantitative Data have endless Stories to tell!

Daily closing prices tell us about the dynamics of the stock market, small smart meters

about the energy consumption of households, smartwatches about what’s going on in

the human body during an exercise, and surveys about some people’s self-estimation

of a topic at some point in time. Different types of experts can tell these stories:

financial analysts, data scientists, sports scientists, sociologists, psychologists and so

on. Their stories are based on models, for example, regression models, time series

models and ANOVA models.

Why are Numeric Scoring Metrics needed?

These models have many consequences in the real world, from the decisions of the

portfolio managers to the pricing of electricity at different times of the day, week and

year. Numeric scoring metrics are needed in order to:

• Select the most accurate model

• Estimate the real-world impact of the error of the model

In this article, we will describe five real-world use cases of numeric prediction models,

and in each use case, we measure the prediction accuracy from a slightly different

point of view. In one case, we measure if a model has a systematic bias, and in another,

we measure a model’s explanation power. The article concludes with a review of the

numeric scoring metrics, showing the formulas to calculate them, and a summary of

their properties. We’ll also link to a few example implementations of building and

evaluating a prediction model in KNIME Analytics Platform.

https://kni.me/w/ijM45fGpZId_JJd3
https://kni.me/w/nRzAJzVATgcqry9h
https://kni.me/w/nRzAJzVATgcqry9h
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Analysis_of_variance#:~:text=Analysis%2520of%2520variance%2520(ANOVA)%2520is,by%2520the%2520statistician%2520Ronald%2520Fisher.
https://www.knime.com/knime-analytics-platform

Numeric Scoring Metrics

9

Five Metrics – Five different Perspectives on

Prediction Accuracy

(Root) Mean Squared Error, (R)MSE

Which model best captures the rapid changes in the volatile stock market?

In the figure below, you see the development of the LinkedIn closing price from 2011

to 2016. Within the time period, the behavior includes sudden peaks, sudden lows,

longer periods of increasing and decreasing value, and a few stable periods.

Forecasting this kind of volatile behavior is challenging, especially in the long term.

However, for the stakeholders of LinkedIn, it’s valuable. Therefore, we prefer a

forecasting model that captures the sudden changes to a model that performs well on

average over the period of five years.

We select the model with the lowest (root) mean squared error because this metric

weights big errors more compared to small errors and favors a model that can react

to short-term changes and save the stakeholders’ money.

LinkedIn daily stock market closing price from 2011 to 2016: data with few regular patterns and many

sudden changes with low forecastability. We select the forecasting model with the lowest (root) mean

squared error because it weights the big forecast errors more and favors a model that can capture the

sudden peaks and lows.

https://en.wikipedia.org/wiki/Mean_squared_error

Numeric Scoring Metrics

10

Mean Absolute Error, MAE

Which model best estimates the energy consumption in the long term?

In the following figure, you can see the hourly energy consumption values in July 2009

in Dublin, collected from a cluster of households and industries. The energy

consumption shows a relatively regular pattern, with higher values during working

hours and on weekdays and lower values at night and during weekends. This kind of a

regular behavior can be forecasted relatively accurately, allowing for long-term

planning of the energy supply. Therefore, we select a forecasting model with the

lowest mean absolute error. We do this because it weights big and small errors equally,

is therefore robust to outliers, and shows which model has the highest forecast

accuracy over the whole time period.

Hourly energy consumption values in June 2009 in Dublin, collected from a cluster of households and

industries. The data shows a relatively regular behavior and can therefore be forecasted in the long term. We

select the forecasting model with the lowest mean absolute error because this metric is robust to outliers.

https://en.wikipedia.org/wiki/Mean_absolute_error

Numeric Scoring Metrics

11

Mean Absolute Percentage Error, MAPE

Are the sales forecasting models for different products equally accurate?

On a hot summer day, the supply of both sparkling water and ice cream should be

guaranteed! We want to check if the two forecasting models that predict the sales of

these two products are equally accurate.

Both models generate forecasts in the same unit, the number of sold items, but at a

different scale since sparkling water is sold in much larger volumes than ice cream. In

this kind of a case, we need a relative error metric and use mean absolute percentage

error, which reports the error relative to the actual value. The line plot on the left in the

figure below shows the sales of sparkling water (purple line) and the sales of ice cream

(green line) in June 2020 as well as the predicted sales of both products (red lines).

The prediction line seems to deviate slightly more for sparkling water than for ice

cream. However, the larger actual values of sparkling water bias the visible

comparison. Actually, the forecasting model performs better for sparkling water than

for ice cream, as reported by the MAPE values 0.191 for sparkling water and 0.369 for

ice cream.

Notice, though, that MAPE values can be biased when the actual values are close to

zero. For example, the sales of ice cream are relatively low during the winter months

compared to summer months, whereas sales of milk remain pretty constant through

the entire year. When we compare the accuracies of the forecasting models for milk

vs. ice cream by their MAPE values, the small values in the ice cream sales make the

forecasting model for ice cream look unreasonably bad compared to the forecasting

model for milk.

In the line plot in the middle, you see the sales of milk (blue line) and ice cream (green

line) and the predicted sales of both products (red lines). If we take a look at the MAPE

values, the forecasting accuracy is apparently much better for milk (MAPE = 0.016)

Three line plots showing actual and predicted values of ice cream and sparkling water (line plot on the left)

and ice cream and milk (line plots in the middle and on the right). In the line plot on the right, the ice cream

sales values are scaled up by 25 in order to avoid the bias in mean absolute percentage error introduced by

small actual values.

https://en.wikipedia.org/wiki/Mean_absolute_percentage_error
https://en.wikipedia.org/wiki/Mean_absolute_percentage_error

Numeric Scoring Metrics

12

than for ice cream (0.266). However, this huge difference is due to the low values of

ice cream sales in the winter months. The line plot on the right in the figure below

shows exactly the same actual and predicted sales of ice cream and milk, with ice

cream sales scaled up by 25 items for each month. Without the bias from the values

close to zero, the forecasting accuracies for ice cream (MAPE=0.036) and milk

(MAPE=0.016) are now much closer to each other.

Mean Signed Difference

Does a running app provide unrealistic expectations?

A smartwatch can be connected to a running application which then estimates the

finishing time in a 10k run. It could be that, as a motivator, the app estimates the time

lower than what’s realistically expected.

To test this, we collect the estimated and realized finishing times from a group of

runners for six months and plot the average values in the line plot below. As you can

see, during the six months, the realized finishing time (orange line) decreases more

slowly than the estimated finishing time (red line). We confirm the systematic bias in

the estimates by calculating the mean signed difference between the actual and

estimated finishing times. It’s negative (-2.191), so the app indeed raises unrealistic

expectations! Notice, though, that this metric is not informative about the magnitude

of the error because if there’s a runner who actually runs faster than the expected time,

this positive error compensates a part of the negative error.

Estimated (red line) and realized (orange line) finishing times in a 10k run in the period of six months. The

estimated times are biased downwards, also shown by the negative value of mean signed difference.

https://en.wikipedia.org/wiki/Mean_signed_deviation

Numeric Scoring Metrics

13

R-squared

How much of our years of education can be explained through access to literature?

The figure below shows the relationship between the access to literature (x-axis) and

years of education (y-axis) in a sample of the population. A linear regression line is

fitted to the data to model the relationship between these two variables. To measure

the fit of the linear regression model, we use R-squared.

R-squared tells how much of the variance of the target column (years of education) the

model explains. Based on the R-squared value of the model, 0.76, the access to

literature explains 76% of the variance in the years of education.

A review of the five Numeric Scoring Metrics

The numeric scoring metrics introduced above are shown in following table. The

metrics are listed along with the formulas used to calculate them and a few key

properties of each. In the formulas, 𝑦𝑖 is the actual value and 𝑓(𝑥𝑖) is the predicted

value.

Linear regression line modeling the relationship between access to

literature and years of education. R-squared is used to measure the model

fit, i.e., how much of the variance in the target column (years of

education) can be explained by the model, 76% in this case.

https://en.wikipedia.org/wiki/Coefficient_of_determination

Numeric Scoring Metrics

14

Summary

In this article, we’ve introduced the most commonly used error metrics and the

perspectives that they provide to the model’s performance.

It’s often recommended to take a look at multiple numeric scoring metrics to gain a

comprehensive view of the model’s performance. For example, by reviewing the mean

signed difference, you can see if your model has a systematic bias, whereas by

studying the (root) mean squared error, you can see which model best captures the

sudden fluctuations. Visualizations, a line plot, for example, complement the model

evaluation.

For a practical implementation, take a look at the example workflows built in the visual

data science tool KNIME Analytics Platform.

Download and inspect these free workflows from the KNIME Community Hub:

• Evaluating the Performance of a Regression Model

• Forecasting and Reconstructing Time Series

This chapter was first published in The New Stack.

Common numeric scoring metrics, their formulas, and key properties. In the formulas, 𝑦𝑖 is the actual value,

𝑓(𝑥𝑖) is the forecasted value, and 𝑛 is the sample size.

https://kni.me/w/ijM45fGpZId_JJd3
https://kni.me/w/nRzAJzVATgcqry9h
https://thenewstack.io/numeric-scoring-metrics-find-the-right-metric-for-a-prediction-model/

15

Visual Scoring Techniques for

Classification Models

Author: Maarit Widmann

Workflow on KNIME Community Hub: Visual Scoring Techniques for Classification Models

Is 99% accuracy good for a churn prediction model? If in reality 1% of the customers

churn and 99% don’t, the model is doing equally well as a random guess. If 10% of the

customers churn and 90% don’t, then the model is doing better than the random guess.

Accuracy statistics, such as overall accuracy, quantify the expected performance of a

Machine Learning model on new data without any baseline, such as a random guess

or existing models.

That’s why we also need visual model evaluation - or scoring - techniques that show

the model performance in a broader context: for varying classification thresholds,

compared to other models, and also from the perspective of resource usage. In this

article, we explain how to evaluate a classification model with an ROC curve, a lift chart,

and a cumulative gain chart, and provide a link to their practical implementation in a

KNIME workflow, Visual Scoring Techniques for Classification Models.

Use Case: Churn Prediction Model

We’ll demonstrate the utility of visual model evaluation techniques through a Random

Forest model (100 trees) for churn prediction.

We use a dataset with 3333 telco customers, including their contract data and phone

usage, available on GitHub. The target column “Churn?” shows whether the customer

churned (True) or not (False). 483 customers (14%) churned, and 2850 customers

(86%) didn’t churn.

The accuracy statistics of the model are shown in the figure below:

https://kni.me/w/jYRUKhGL_ScaKGhV
https://kni.me/w/jYRUKhGL_ScaKGhV
https://github.com/albayraktaroglu/Datasets/blob/master/churn.csv

Visual Scoring Techniques for Classification Models

16

From the accuracy statistics table, we draw the following conclusions:

• The overall accuracy is around 94%, which means that 94 out of every 100

customers in the test data got a correct class prediction as Churn = True or Churn

= False.

• The sensitivity value is around 59% for the class True. This implies that around 6

out of every 10 customers who churned (Churn=True) were predicted correctly to

churn, while the remaining 4 were predicted incorrectly to not churn.

• The specificity value around 99% for the class True indicates that almost all of

the customers who didn’t churn (Churn=False) were classified correctly.

In the following sections, we use different visual scoring technique to gain additional

information about the model’s performance.

Comparing Performances across Classification

Thresholds

The accuracy statistics are calculated based on the actual and predicted target

classes. The predicted classes, here True and False, are based on class probabilities

(or scores) predicted by the model, ranging between 0 and 1. In a binary classification

problem, the model outputs two probabilities, one for each class. By default, the class

with the highest probability determines the predicted class, which in a binary

Confusion matrix, class statistics, and overall accuracy statistics of the Random Forest model

for churn prediction.

Visual Scoring Techniques for Classification Models

17

classification problem means that the class with a probability above 0.5 gets

predicted. However, sometimes a different classification threshold can lead to a better

performance. If this is the case, we can find it out in an ROC curve.

ROC Curve

An ROC curve (Receiving Operator Characteristics curve) plots the model performance

for varying classification thresholds using two metrics: the false positive rate on the x-

axis and the true positive rate on the y-axis.

In a binary classification task, one of the target classes is arbitrarily assumed to be the

positive class, while the other class becomes the negative class. In our churn

prediction problem, we have selected True to be the positive class and False the

negative class.

The number of true positives (TP), false negatives (FN), false positives (FP), and true

negatives (TN), as reported in the confusion matrix, are used to calculate the false

positive rate and true positive rate.

• The false positive rate

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁+𝐹𝑃
 measures the proportion of the customers who didn’t churn but

were incorrectly predicted to churn. This equals 1-specificity.

• The true positive rate

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 measures the proportion of the customers who churned and were

correctly predicted to churn. This equals sensitivity.

The first point of the ROC curve in the bottom left corner indicates the false positive

rate (FPR) and true positive rate (TPR) obtained using the maximum threshold value

1.0. With this threshold, all customers with probability P(churn=True) > 1.0 will be

predicted to churn, that is none. No customers are predicted to churn either correctly

or incorrectly, and therefore FPR and TPR are both 0.0.

The second point in the ROC curve is drawn by decreasing the threshold value, for

example by 0.1. Now all customers with P(churn=True) > 0.9 will be predicted to churn.

The threshold is still high, but it is now possible that some customers will be predicted

to churn, therefore producing small non-zero values of TPR or FPR. So, this point will

be located in the ROC curve close to the previous point.

The third point is drawn by decreasing the threshold value some more, and so on, till

we reach the last point in the curve drawn for the minimum classification threshold

0.0. With this threshold, all customers are assigned to the positive class True, either

correctly or incorrectly, and therefore both TPR and FPR are 1.0.

https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Visual Scoring Techniques for Classification Models

18

A perfect model would produce TPR=1.0 and FPR=0.0. On the opposite, a random

classifier would always make an equal number of correct and incorrect predictions into

the positive class, which corresponds to the black diagonal line where FPR=TPR. This

line is reported in each ROC curve as a reference for a useless model.

Notice that a model can of course perform worse than the random guess, but that

might be a mistake of the data scientist rather than the model! It would be enough to

take the opposite of the model decision to implement a better performing solution.

Below, you see an ROC Curve, drawn for the Random Forest model for churn

prediction. Notice the dotted line corresponding to the random guess.

The optimal classification threshold for the model is located as close as possible to

the top left corner - with TPR=1.0 and FPR=0.0 - occupied by the perfect model. This

optimal point has the closest tangent to (0.0, 1.0). With this optimal classification

threshold we have the least false positives for each true positive. Our example model

predicts on average

0.85

0.05
= 17

true positives for each false positive, when we use the optimal classification threshold.

If we compare these numbers to the class statistics, we can say that, after optimizing

the classification threshold, the sensitivity increases quite a lot from 59% to 85%, while

specificity decreases only a bit from 99% to 100% - 5% = 95%.

ROC curve shows the false positive rate on the x-axis and true positive rate on the y-axis for all possible

classification thresholds from 0 to 1.

Visual Scoring Techniques for Classification Models

19

Comparing multiple Models

An ROC curve is also useful for comparing models. Let’s train another model, a

Decision Tree, for the same churn prediction task and compare its performance with

the Random Forest model.

The figure below shows two ROC curves in the same view. The green curve is for the

Random Forest model and the blue curve is for the Decision Tree:

In the ROC curve for multiple models, a curve closer to the top left corner, in this case

the green curve of the Random Forest model, implies better performance. The view

also shows the Area under the Curve (AuC) statistics for both models in the bottom

right corner. It measures the area underlying each ROC curve and allows for a more

refined comparison between the performances.

In the next section, we show how you can visually evaluate the model based on the

required efforts to reach the positive class.

Saving Resources with a Model

Besides getting accurate predictions, we can also save resources with the model. In

our example of churn prediction, some kind of an action follows the prediction, and the

action requires resources, such as less revenue or more time investment. A model can

ROC curves of two models - a Random Forest and a Decision Tree - for churn prediction. The model

which reaches closer to the top left corner and has a greater AuC statistics performs better.

Visual Scoring Techniques for Classification Models

20

help us to use the resources more efficiently: apply fewer actions but still reach more

of the customers who are likely to churn.

The lift and cumulative gain charts compare the resource usage against the correct

predictions.

Lift Chart

A lift chart compares the number of target customers - here the customers who churn

- reached in a sample that has been extracted based on the model predictions vs in a

random sample.

Below you see the lift chart of the Random Forest model:

The x-axis shows each decile of the data ordered according to their predicted positive

class probabilities from the highest to the lowest. For example, if we have 100

customers in the data, the first decile contains 10 customers with the highest predicted

positive class probability, that is 10 customers who are most likely to churn. In the

second decile we have other 10 customers with a lower probability than the first 10

customers, but higher than the remaining 80 customers. The tenth decile contains 10

customers with the lowest probability; 10 customers who are least likely to churn.

The lift shown by the cumulative lift line (the blue line) is the ratio of target customers

reached in a sample which is drawn from ordered data as shown on the x-axis vs in a

random sample. The lift is about 6 for the first decile. Since 14% of the customers in

the original data churn, the probability of reaching a target customer in a random

Lift chart shows the ratio of target customers reached in a sample which is drawn based on the model

predictions vs in a random sample.

http://www2.cs.uregina.ca/~dbd/cs831/notes/lift_chart/lift_chart.html

Visual Scoring Techniques for Classification Models

21

sample is 14%. If we randomly sample 10 customers out of 100 customers, we expect

to reach 0.14 ∗ 10 = 1.4 target customers. If we sample 10 first customers from the

ordered data, we expect to reach 6 times more, that is 6 ∗ 1.4 = 8.4 target customers.

If we increase the sample size by further 10%, the cumulative lift is around 4. We would

now reach 0.14 ∗ 20 = 2.8 target customers in a random sample, and 4 ∗ 2.8 = 11.2

target customers in a sample from the ordered data. The more data we sample, the

more target customers are reached also by random sampling. This explains why the

difference between the cumulative lift and the baseline (the green line) decreases

towards the tenth decile.

The lift line (the red line) shows the lift for each decile separately. The lift is above the

baseline for the first two deciles and below it from the third decile forward. This means

that if we sample the first decile from 100 customers, we expect to have 6 ∗ 1.4 = 8.4

target customers. If we sample the second decile but not the first decile, we expect to

have 2 ∗ 1.4 = 2.8 target customers. If we sample any of the 3th to the 10th decile, we

expect to have maximum 0.25 ∗ 1.4 = 0.35 target customers, because among these

80% of the data, the lift stays at a very low level between 0 and 0.25.

Cumulative Gain Chart

A cumulative gain chart shows which proportion of the target customers can be

reached with which sample size. Similarly to the lift chart, the cumulative gain chart

shows the data ordered by their positive class probabilities on the x-axis. On the y-axis

it shows the proportion of target customers reached.

The figure below shows the cumulative gain chart for the Random Forest model.

If we follow the curve, we can see that if we only sample 10% of the customers, those

with the highest probability (x-axis), we expect to reach around 60% of all customers

who churn (y-axis). If we sample 20% of the customers, again those with the highest

probability, we expect to reach more than 80% of all customers who churn. This point

also has the closest tangent to the top left corner. With this number of sampled

customers, the average sample size required to reach one target customer is the

lowest.

Visual Scoring Techniques for Classification Models

22

Visual Model Evaluation Techniques – Summary

The table below collects the techniques described above and summarizes what they

report about the model’s performance.

These visual techniques complement the accuracy statistics in that they show the

optimal classification threshold, compare the performance to a random guess,

compare multiple models in one view, and indicate the optimal sample size and quality.

Cumulative gain chart shows which proportion of target customers we reach when we contact 10%, 20%, …,

100% of the customers ordered by their positive class probability.

Summary of the visual evaluation techniques for a classification model.

Visual Scoring Techniques for Classification Models

23

The ROC curve shows the performances across different classification thresholds,

compares the performance to a random guess, and also compares the performances

of multiple models. The lift chart and cumulative gain charts show if the model enables

us to invest less resources but still reach the desired outcome.

These visual techniques complement but don’t replace the accuracy statistics. For a

comprehensive model evaluation, it’s good to take a look at both.

Tips and Tricks

KNIME Analytics Platform provides a Binary Classification Inspector node that can be

used to compare the accuracy statistics and ROC curves of multiple models and also

find the optimal classification threshold. Its interactive view shows:

• A bar chart for overall accuracy and class statistics

• An ROC curve

• The confusion matrix

• The distribution of positive class probabilities

• A slider widget for the classification threshold

Binary classification inspector node’s interactive view displays a bar chart for accuracy statistics, ROC curve,

confusion matrix, and distribution of positive class probabilities in one view for one or more classification

models. All views will be updated when the slider widget is used to adjust the classification threshold.

https://kni.me/n/3-JGPq9anCe8LGG6

Visual Scoring Techniques for Classification Models

24

The top part of the Binary Classification Inspector node’s view shows a bar chart for

accuracy statistics and an ROC curve. Each model is displayed by a different color,

here green for the Random Forest model and blue for the Decision Tree. We can select

one of the models for a more detailed inspection by clicking on a colored bar. We’ve

selected the Random Forest model in the figure above. The bottom part of the view

activates and shows the confusion matrix and the distribution of the positive class

probabilities for the selected model. The purple and green line in the distribution chart

show the number of customers for each predicted probability separately for the two

target classes. The orange vertical line shows the current classification threshold.

The classification threshold is at 0.5 by default. Using the threshold slider widget we

can change this value: to the left towards zero or to the right towards 1. When we do,

all other charts and plots in the view are automatically adjusted according to the new

classification threshold. For example, when we move it to the left, the diamond in the

ROC curve moves to the right. We stop moving the threshold when the diamond

reaches the point for the optimal threshold, in this case at 0.256. This is the optimal

classification threshold for the Random Forest model. Quite a lot different from the

default 0.5!

The binary classification inspector view and the visual model evaluation techniques

introduced in this article are implemented in the Visual Scoring Techniques for a

Classification Model workflow. You can inspect and download this workflow for free

from the KNIME Community Hub.

This workflow, Visual Scoring Techniques for a Classification Model, implements the following visual model

scoring techniques: ROC Curve, Lift Chart, and Cumulative Gain Chart. In addition, the Binary Classification

Inspector node is used to combine multiple scoring techniques in one interactive view. The workflow is

available for download from the KNIME Community Hub.

https://kni.me/w/jYRUKhGL_ScaKGhV
https://kni.me/w/jYRUKhGL_ScaKGhV
https://kni.me/w/jYRUKhGL_ScaKGhV

25

Correcting Predicted Class

Probabilities in Imbalanced Datasets

Authors: Alfredo Roccato and Maarit Widmann

Workflow on KNIME Community Hub: Adjusting Class Probabilities after Resampling

Classification on Imbalanced Datasets

It is not unusual in machine learning applications to deal with imbalanced datasets

such as fraud detection, computer network intrusion, medical diagnostics, and many

more.

Data imbalance refers to unequal distribution of classes within a dataset, namely that

there are far fewer events in one class in comparison to the others. If, for example we

have credit card fraud detection dataset, most of the transactions are not fraudulent

and very few can be classed as fraud detections. This underrepresented class is called

the minority class, and by convention, the positive class.

It is recognized that classifiers work well when each class is fairly represented in the

training data.

Therefore if the data are imbalanced, the performance of most standard learning

algorithms will be compromised, because their purpose is to maximize the overall

accuracy. For a dataset with 99% negative events and 1% positive events, a model

could be 99% accurate, predicting all instances as negative, though, being useless. Put

in terms of our credit card fraud detection dataset, this would mean that the model

would tend to classify fraudulent transactions as legitimate transactions. Not good!

As a result, overall accuracy is not enough to assess the performance of models

trained on imbalanced data. Other statistics, such as Cohen's kappa and F-measure,

should be considered. F-measure captures both the precision and recall, while Cohen’s

kappa takes into account the a priori distribution of the target classes.

The ideal classifier should provide high accuracy over the minority class, without

compromising on the accuracy for the majority class.

https://kni.me/w/0ufkiBeS8F8x6bhW
https://hub.knime.com/search?q=fraud%20detection&type=Workflow
https://en.wikipedia.org/wiki/Cohen%27s_kappa
https://en.wikipedia.org/wiki/F1_score
https://en.wikipedia.org/wiki/Precision_and_recall

Correcting Predicted Class Probabilities in Imbalanced Datasets

26

Resampling to balance Datasets

To work around the problem of class imbalance, the rows in the training data are

resampled. The basic concept here is to alter the proportions of the classes (a priori

distribution) of the training data in order to obtain a classifier that can effectively

predict the minority class (the actual fraudulent transactions).

Resampling Techniques

• Undersampling

A random sample of events from the majority class is drawn and removed from

the training data. A drawback of this technique is that it loses information and

potentially discards useful and important data for the learning process.

• Oversampling

Exact copies of events representing the minority class are replicated in the

training dataset. However, multiple instances of certain rows can make the

classifier too specific, causing overfitting issues.

• SMOTE (Synthetic Minority Oversampling Technique)

"Synthetic" rows are generated and added to the minority class. The artificial

records are generated based on the similarity of the minority class events in the

feature space.

Correcting predicted Class Probabilities

Let’s assume that we train a model on a resampled dataset. The resampling has

changed the class distribution of the data from imbalanced to balanced. Now, if we

apply the model to the test data and obtain predicted class probabilities, they won’t

reflect those of the original data. This is because the model is trained on training data

that are not representative of the original data, and thus the results do not generalize

into the original or any unseen data. This means that we can use the model for

prediction, but the class probabilities are not realistic: we can say whether a

transaction is more probably fraudulent or legitimate, but we cannot say how probably

it belongs to one of these classes. Sometimes we want to change the classification

threshold because we want to take more/less risks, and then the model with the

corrected class probabilities that haven't been corrected wouldn't work anymore.

https://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_data_analysis
https://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_data_analysis
https://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_data_analysis#SMOTE

Correcting Predicted Class Probabilities in Imbalanced Datasets

27

After resampling, we have now trained a model on balanced data i.e. that contain an

equal number of fraudulent and legitimate transactions, which is luckily not a realistic

scenario for any credit card provider and therefore - without correcting the predicted

class probabilities - would not be informative about the risk of the transactions in the

next weeks and months.

If the final goal of the analysis is not only to classify based on the highest predicted

class probability, but also to get the correct class probabilities for each event, we need

to apply a transformation to the obtained results. If we don’t apply the transformation

to our model, grocery shopping with a credit card in a supermarket might raise too

much interest!

The following formula1 shows how to correct the predicted class probabilities for a
binary classifier:

𝑃+
′ =  

 𝑃+∗(
𝑝𝑜+
𝑝𝑡+

)

𝑃+∗(
𝑝𝑜+
𝑝𝑡+

)+(1−𝑃+)∗
(1−𝑝𝑜+)

(1−𝑝𝑡+)

𝑃−
′ =  

(1−𝑃+)∗
(1−𝑝𝑜+)

(1−𝑝𝑡+)

𝑃+∗(
𝑝𝑜+
𝑝𝑡+

)+(1−𝑃+)∗
(1−𝑝𝑜+)

(1−𝑝𝑡+)

where

𝑃+ is the positive class probability predicted by the model,

𝑝𝑜+ is the proportion of the positive class in the original data,

𝑝𝑡+ is the proportion of the positive class in the training data,

and 𝑃+
′ is the corrected positive class probability.

 𝑃−
′ is its complement to 1, i.e., the corrected negative class probability.

For example, if the proportion of the positive class in the original dataset is 1% and

after resampling it is 50%, and the predicted positive class probability is 0.95, applying

the correction it gives:

𝑃+
′ =  

0.95∗ (
0.01

0.50
)

0.95∗ (
0.01

0.50
) +(1−0,95)∗

(1−0.01)

(1−0.50)

≈ 0.161

Example: Fraud Detection

When we apply a classification model to detect fraudulent transactions, the model has

to work reliably on imbalanced data. Although few in number, fraudulent transactions

can have remarkable consequences. Therefore, it’s worth checking how much we can

1 Marco Saerens, Patrice Latinne, and Christine Decaestecker. Adjusting the outputs of a classifier to new a

priori probabilities: a simple procedure. Neural computation 14(1):21–41, 2002.

Correcting Predicted Class Probabilities in Imbalanced Datasets

28

improve the performance of the model and its usability in practice by resampling the

data and correcting the predicted class probabilities.

Evaluating the Cost of a Classification Model

In the real world, the performance of a classifier is usually assessed in terms of cost-

benefit analysis: correct class predictions bring profit, whereas incorrect class

predictions bring cost. In this case, fraudulent transactions predicted as legitimate

cost the amount of fraud, and transactions predicted as fraudulent - correctly or

incorrectly - bring administrative costs.

Administrative costs (Adm) are the expected costs of contacting the card holder and

replacing the card if the transaction was correctly predicted as fraudulent, or

reactivating it if the transaction was legitimate. Here we assume, for simplicity, that

the administrative costs for both cases are identical.

The cost matrix below summarizes the costs assigned to the different classification

results. The minority class, “fraudulent”, is defined as the positive class, and

“legitimate” is defined as the negative class.

Based on this cost matrix, the total cost of the model is:

𝐶𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙 = 𝐹𝑁 ∗ 𝐴𝑀𝑂𝑈𝑁𝑇𝑗 + 𝐹𝑃 ∗ 𝐴𝑑𝑚 + 𝑇𝑃 ∗ 𝐴𝑑𝑚

where

𝐹𝑁 (𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)is the number of fraudulent transactions predicted as legitimate,

𝐹𝑃 (𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)is the number of legitimate transactions predicted as fraudulent,

𝑇𝑃 (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)is the number of fraudulent transactions predicted as fraudulent,

and 𝐴𝑀𝑂𝑈𝑁𝑇𝑗 is the amount of fraud for the fraudulent transaction j predicted as legitimate.

Finally, the cost of the model will be compared to the amount of fraud. Cost reduction

tells how much cost the classification model brings compared to the situation where

we don’t use any model:

𝐶𝑜𝑠𝑡 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 =
𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑓𝑟𝑎𝑢𝑑−𝐶𝑜𝑠𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑑𝑒𝑙

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑓𝑟𝑎𝑢𝑑

The cost matrix that shows the costs assigned to different classification results as

obtained by a model for fraud detection. Correctly classified legitimate transactions

bring no cost. Fraudulent transactions predicted as legitimate cost the amount of

fraud. Transactions predicted as fraudulent bring administrative costs.

Correcting Predicted Class Probabilities in Imbalanced Datasets

29

The Workflow

In this example we use the "Credit Card Fraud Detection" dataset provided by Worldline

and the Machine Learning Group of ULB (Université Libre de Bruxelles) on big data

mining and fraud detection. The dataset contains 284 807 transactions made by

European credit card holders during two days in September 2013. The dataset is highly

imbalanced: 0.172% (492 transactions) were fraudulent and the rest were normal.

Other information on the transactions has been transformed into principal

components.

The workflow in the figure below shows the overall process of reading the data,

partitioning the data into a training and test set, resampling the data, training a

classification model, predicting and correcting the class probabilities, and evaluating

the cost reduction. We selected SMOTE as the resampling technique and logistic

regression as the classification model. Here we estimate administrative costs to be 5

euros.

The workflow provides three different scenarios for the same data:

• training and applying the model using imbalanced data,

• training the model on balanced data and applying the model to imbalanced data

without correcting the predicted class probabilities,

• training the model on balanced data and applying the model to imbalanced data

where the predicted class probabilities have been corrected.

This workflow, Adjusting Class Probabilities after Resampling, compares three ways of training and applying

a classification model using imbalanced data. Firstly, the model training is done on imbalanced data.

Secondly, the training set is resampled using SMOTE to make it balanced. Thirdly, the training set is

resampled using SMOTE and predicted class probabilities are corrected based on the a priori class

distribution of the data. The workflow is available for download from the KNIME Community Hub.

https://www.kaggle.com/samkirkiles/credit-card-fraud/data
http://mlg.ulb.ac.be/
http://mlg.ulb.ac.be/
https://hub.knime.com/-/spaces/-/latest/~0ufkiBeS8F8x6bhW/

Correcting Predicted Class Probabilities in Imbalanced Datasets

30

Estimating the Cost for Scenario 1 without Resampling

A logistic regression model provides these results:

The setup in this scenario provides good values for F-measure and Cohen’s Kappa

statistics, but a relatively high False Negative Rate (40.82%). This means that more

than 40% of the fraudulent transactions were not detected by the model - increasing

the amount of fraud and therefore the cost of the model. The cost reduction of the

model compared to not using any model is 42%.

Estimating the Cost for Scenario 2 with Resampling

A logistic regression model trained on a balanced training set (oversampled using

SMOTE) yields these results:

The False Negative Rate is very low (12.24 %), which means that almost 90 % of the

fraudulent transactions were detected by the model. However, there are a lot of “false

alarms” (391 legitimate transactions predicted as fraud) that increase the

administrative costs. However, the cost reduction achieved by training the model on a

The confusion matrix, class statistics and estimated cost reduction obtained by a

fraud detection model that was trained on imbalanced data. The cost reduction is

evaluated using the formula in the “Evaluating the cost of a classification model”

section.

The confusion matrix, class statistics and estimated cost obtained by a fraud

detection model that was trained on an oversampled, balanced data. The cost is

evaluated using the formula in the “Evaluating the cost of a classification model”

section.

Correcting Predicted Class Probabilities in Imbalanced Datasets

31

balanced dataset is 64% - higher than what we could reach without resampling the

training data. The same test set was used for both scenarios.

Estimating the Cost for scenario 3 with Resampling and Correcting the

predicted Class Probabilities

A logistic regression model trained on a balanced training set (oversampled using

SMOTE) yields these results when the predicted probabilities have been corrected

according to the a priori class distribution of the data.

As the results for this scenario in the table above show, correcting the predicted class

probabilities leads to the best model of these three scenarios in terms of the greatest

cost reduction.

In this scenario, where we train a classification model on an oversampled data and

correct the predicted class probabilities according to the a priori class distribution in

the data, we reach a cost reduction of 75 % compared to not using any model.

Of course, the cost reduction depends on the value of the administrative costs. Indeed,

we tried this by changing the estimated administrative costs and found out that this

last scenario can attain cost reduction as long as the administrative costs are 0.80

euros or more.

Summary

Often, when we train and apply a classification model, the interesting events in the data

belong to the minority class and are therefore more difficult to find: fraudulent

transactions among the masses of transactions, disease carriers among the healthy

people, and so on.

The confusion matrix, class statistics and estimated cost as obtained by a fraud

detection model that was trained on an oversampled, balanced data, and where

the predicted class probabilities were corrected according to the a priori class

distribution. The cost is evaluated using the formula in the “Evaluating the cost of

a classification model” section.

Correcting Predicted Class Probabilities in Imbalanced Datasets

32

From the point of view of the performance of a classification algorithm, it’s

recommended to make the training data balanced. We can do this by resampling the

training data. Now, the training of the model works better, but how about applying it to

new data, which we assume to be imbalanced? This setup leads to biased values for

the predicted class probabilities, because the training set does not represent the test

set or any new, unseen data.

Therefore, to obtain an optimal performance of a classification model together with

reliable classification results, correcting the predicted class probabilities by the

information on the a priori class distribution is recommended. As the use case in this

blog post shows, this correction leads to better model performance and concrete

profit.

33

Cohen’s Kappa

What it is, When to use it, How to avoid Pitfalls

Author: Maarit Widmann

Workflow on KNIME Community Hub: Cohen's Kappa for Evaluating Classification Models

An Alternative for when Overall Accuracy is biased,

yet not trusting the Statistics blindly

Cohen’s kappa is a metric often used to assess the agreement between two raters. It

can also be used to assess the performance of a classification model.

For example, if we had two bankers, and we asked both to classify 100 customers in

two classes for credit rating, i.e., good and bad, based on their creditworthiness, we

could then measure the level of their agreement through Cohen's kappa.

Similarly, in the context of a classification model, we could use Cohen’s kappa to

compare the machine learning model predictions with the manually established credit

ratings.

Like many other scoring metrics, Cohen’s kappa is calculated based on the confusion

matrix. However, in contrast to calculating overall accuracy, for example, Cohen’s

kappa takes imbalance in class distribution into account and can therefore be more

complex to interpret.

In this article we will:

• Guide you through the calculation and interpretation of Cohen’s Kappa values,

particularly in comparison with overall accuracy values,

• Show that where overall accuracy fails because of a large imbalance in the class

distribution, Cohen’s kappa might supply a more objective description of the

model performance,

• Introduce a few tips to keep in mind when interpreting Cohen’s kappa values!

https://kni.me/w/jFQxQbx_BdIjD_9D

Cohen’s Kappa

34

Measure Performance Improvement on imbalanced

Datasets

Let’s focus on a classification task on bank loans, using the German credit data

provided by the UCI Machine Learning Repository. In this dataset, bank customers

have been assigned either a “bad” credit rating (30%) or a “good” credit rating (70%)

according to the criteria of the bank. For the purpose of this article, we exaggerated

the imbalance in the target class credit rating via bootstrapping, giving us 10% with a

“bad” credit rating and 90% with a “good” credit rating: a highly imbalanced dataset.

Exaggerating the imbalance helps us to make the difference between “overall

accuracy” and “Cohen’s kappa” clearer in this article.

Let’s partition the data into a training set (70%) and a test set (30%) using stratified

sampling on the target column and then train a simple model, a decision tree, for

example. Given the high imbalance between the two classes, the model will not

perform too well. Nevertheless, let’s use its performance as the baseline for this study.

Baseline Model

In the figure below you can see the confusion matrix and accuracy statistics for this

baseline model. The overall accuracy of the model is quite high (87%) and hints at an

acceptable performance by the model. However, in the confusion matrix, we can see

that the model is able to classify only 9 out of the 30 credit customers with a bad credit

rating correctly. This is also visible by the low sensitivity value of class “bad” - just 30%.

Basically, the decision tree is classifying most of the “good” customers correctly and

neglecting the necessary performance on the few “bad” customers. The imbalance in

Confusion matrix and accuracy statistics for the baseline model, i.e. a decision tree model trained on the

highly imbalanced training set. The overall accuracy is relatively high (87%), although the model detects just

a few of the customers with a bad credit rating (sensitivity just at 30%).

https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)

Cohen’s Kappa

35

the class a priori probability compensates for such sloppiness in classification. Let’s

note for now that Cohen's kappa value is just 0.244, within its range of [-1,+1].

Improved Model

Let’s try to improve the model performance by forcing it to acknowledge the existence

of the minority class. We train the same model this time on a training set where the

minority class has been oversampled using the SMOTE technique, reaching a class

proportion of 50 % for both classes.

To provide more detail about the confusion matrix for this model, 18 out of the 30

customers with a “bad” credit rating are detected by the model, leading to a new

sensitivity value of 60% over the previous 30%. Cohen’s kappa statistics is now 0.452

for this model, which is a remarkable increase from the previous value 0.244. But what

about overall accuracy? For this second model it’s 89%, not very different from the

previous value 87%.

When summarizing we get two very different pictures. According to the overall

accuracy, model performance hasn’t changed very much at all. However, according to

Cohen’s kappa a lot has changed! Which statement is right?

From the numbers in the confusion matrix, it seems that Cohen’s kappa has a more

realistic view of the model’s performance when using imbalanced data.

Why does Cohen’s kappa take more notice of the minority class? How is it actually

calculated? Let’s take a look!

Confusion matrix and accuracy statistics for the improved model. The decision tree model trained on a more

balanced training set, where the minority class has been oversampled. The overall accuracy is almost the

same as for the baseline model (89% vs. 87%). However, Cohen's kappa value shows a remarkable increase

from 0.244 to 0.452.

https://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_data_analysis#SMOTE

Cohen’s Kappa

36

Cohen’s Kappa

Cohen’s kappa is calculated with the following formula2:

𝜅 =
𝑝0−𝑝𝑒

1−𝑝𝑒
,

where 𝑝0 is the overall accuracy of the model and 𝑝𝑒 is the measure of the agreement

between the model predictions and the actual class values as if happening by chance.

In a binary classification problem, like ours, 𝑝𝑒 is the sum of 𝑝𝑒1 , the probability of the

predictions agreeing with actual values of class 1 (“good”) by chance, and 𝑝𝑒2 , the

probability of the predictions agreeing with the actual values of class 2 (“bad”) by

chance. Assuming that the two classifiers - model predictions and actual class values

- are independent, these probabilities, 𝑝𝑒1 and 𝑝𝑒2 , are calculated by multiplying the

proportion of the actual class and the proportion of the predicted class.

Considering “bad” as the positive class, the baseline model assigned 9% of the records

(false positives plus true positives) to class “bad”, and 91% of the records (true

negatives plus false negatives) to class “good”. Thus 𝑝𝑒 is:

𝑝𝑒 = 𝑝𝑒1 + 𝑝𝑒2

𝑝𝑒 = 𝑝𝑒1,𝑡𝑎𝑟𝑔𝑒𝑡 ∗ 𝑝𝑒1,𝑝𝑟𝑒𝑑 + 𝑝𝑒2,𝑡𝑎𝑟𝑔𝑒𝑡 ∗ 𝑝𝑒2,𝑝𝑟𝑒𝑑

𝑝𝑒 = 0.90 ∗ 0.91 + 0.10 ∗ 0.09

𝑝𝑒 = 0.828

And therefore Cohen’s kappa statistics:

𝜅 =
0.870−0.828

1−0.828
≈ 0.244

which is the same value as reported in accuracy statistics table.

Practically, Cohen’s kappa removes the possibility of the classifier and a random guess

agreeing and measures the number of predictions it makes that cannot be explained

by a random guess. Furthermore, Cohen’s kappa tries to correct the evaluation bias by

taking into account the correct classification by a random guess.

Pain Points of Cohen’s Kappa

At this point, we know that Cohen’s kappa is a useful scoring metric when dealing with

imbalanced data. However, Cohen’s kappa has some downsides, too. Let’s have a look

at them one by one.

2 Bland, Martin. "Cohen’s kappa." University of York Department of Health Sciences https://www-

users.york.ac.uk/~mb55/msc/clinimet/week4/kappa_text.pdf. [Accessed May 29 2020] (2008).

https://www-users.york.ac.uk/~mb55/msc/clinimet/week4/kappa_text.pdf
https://www-users.york.ac.uk/~mb55/msc/clinimet/week4/kappa_text.pdf

Cohen’s Kappa

37

Full Range [-1, +1], but not equally reachable

It’s easier to reach higher values of Cohen’s kappa, if the target class distribution is

balanced.

For the baseline model, the distribution of the predicted classes follows closely the

distribution of the target classes: 27 predicted as “bad” vs. 273 predicted as “good”

and 30 being actually “bad” vs. 270 being actually “good”.

For the improved model, the difference between the two class distributions is greater:

40 predicted as “bad” vs. 260 predicted as “good” and 30 being actually “bad” vs. 270

being actually “good”.

As the formula for maximum Cohen’s kappa shows, the more the distributions of the

predicted and actual target classes differ, the lower the maximum reachable Cohen’s

kappa value is. The maximum Cohen’s kappa value represents the edge case of either

the number of false negatives or false positives in the confusion matrix being zero, i.e.

all customers with a good credit rating, or alternatively all customers with a bad credit

rating, are predicted correctly.

𝜅𝑚𝑎𝑥 =
𝑝𝑚𝑎𝑥−𝑝𝑒

1−𝑝𝑒
,

where 𝑝𝑚𝑎𝑥 is the maximum reachable overall accuracy of the model given the

distributions of the target and predicted classes:

𝑝𝑚𝑎𝑥 = 𝑚𝑖𝑛 (𝑝𝑡𝑎𝑟𝑔𝑒𝑡="𝑏𝑎𝑑", 𝑝𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑="𝑏𝑎𝑑") + 𝑚𝑖𝑛 (𝑝𝑡𝑎𝑟𝑔𝑒𝑡="𝑔𝑜𝑜𝑑", 𝑝𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑="𝑔𝑜𝑜𝑑")

For the baseline model, we get the following value for 𝑝𝑚𝑎𝑥 :

𝑝𝑚𝑎𝑥 = 𝑚𝑖𝑛 (0.10, 0.09) + 𝑚𝑖𝑛(0.90, 0.91) = 0.99

Whereas for the improved model it is:

𝑝𝑚𝑎𝑥 = 𝑚𝑖𝑛 (0.10, 0.13) + 𝑚𝑖𝑛(0.90, 0.87) = 0.97

The maximum value of Cohen’s kappa is then for the baseline model:

𝜅𝑚𝑎𝑥 =
𝑝𝑚𝑎𝑥−𝑝𝑒

1−𝑝𝑒
=

0.99−0.828

1−0.828
= 0.942

For the improved model it is:

𝜅𝑚𝑎𝑥 =
𝑝𝑚𝑎𝑥−𝑝𝑒

1−𝑝𝑒
=

0.97−0.796

1−0.796
= 0.853

As the results show, the improved model with a greater difference in the distributions

between the actual and predicted target classes can only reach a Cohen's kappa value

as high as 0.853. Whereas the baseline model can reach the value 0.942, despite the

worse performance.

Cohen’s Kappa

38

Cohen’s Kappa is higher for balanced Data

When we calculate Cohen’s kappa, we strongly assume that the distributions of target

and predicted classes are independent and that the target class doesn’t affect the

probability of a correct prediction. In our example this would mean that a credit

customer with a good credit rating has an equal chance of getting a correct prediction

as a credit customer with a bad credit rating. However, since we know that our baseline

model is biased towards the majority “good” class, this assumption is violated.

If this assumption were not violated, like in the improved model where the target

classes are balanced, we could reach higher values of Cohen’s kappa. Why is this? We

can rewrite the formula of Cohen’s kappa as the function of the probability of the

positive class, and the function reaches its maximum when the probability of the

positive class is 0.5 [1]. We test this by applying the same improved model to different

test sets, where the proportion of the positive “bad” class varies between 5% and 95%.

We create 100 different test sets per class distribution by bootstrapping the original

test data and calculate the average Cohen’s kappa value from the results.

The figure below shows the average Cohen’s kappa values against the positive class

probabilities - and yes! Cohen’s kappa does reach its maximum when the model is

applied to balanced data!

Cohen’s kappa values (on the y-axis) obtained for the same model with varying positive class

probabilities in the test data (on the x-axis). The Cohen’s kappa values on the y-axis are calculated

as averages of all Cohen’s kappas obtained via bootstrapping the original test set 100 times for a

fixed class distribution. The model is the Decision Tree model trained on balanced data, introduced

at the beginning of the article.

Cohen’s Kappa

39

Cohen’s Kappa says little about the expected Prediction

Accuracy

The numerator of Cohen’s kappa, p0-pe tells the difference between the observed

overall accuracy of the model and the overall accuracy that can be obtained by chance.

The denominator of the formula, 1-pe, tells the maximum value for this difference.

For a good model, the observed difference and the maximum difference are close to

each other, and Cohen’s kappa is close to 1. For a random model, the overall accuracy

is all due to the random chance, the numerator is 0, and Cohen’s kappa is 0. Cohen’s

kappa could also theoretically be negative. Then, the overall accuracy of the model

would be even lower than what could have been obtained by a random guess.

Given the explanation above, Cohen’s kappa is not easy to interpret in terms of an

expected accuracy, and it’s often not recommended to follow any verbal categories as

interpretations. For example, if you have 100 customers and a model with an overall

accuracy of 87 %, then you can expect to predict the credit rating correctly for 87

customers. Cohen’s kappa value 0.244 doesn’t provide you with an interpretation as

easy as this.

Summary

In this article we have explained how to use and interpret Cohen’s kappa to evaluate

the performance of a classification model. While Cohen’s kappa can correct the bias

of overall accuracy when dealing with unbalanced data, it has a few shortcomings. So

the next time you take a look at the scoring metrics of your model, remember:

• Cohen’s kappa is more informative than overall accuracy when working with

unbalanced data. Keep this in mind when you compare or optimize classification

models!

• Take a look at the row and column totals in the confusion matrix. Are the

distributions of the target/predicted classes similar? If they’re not, the maximum

reachable Cohen’s kappa value will be lower.

• The same model will give you lower values of Cohen’s kappa for unbalanced than

for balanced test data.

• Cohen’s kappa says little about the expected accuracy of a single prediction

Cohen’s Kappa

40

Example Workflow: Cohen's Kappa for evaluating

Classification Models

The workflow used for this study is shown below. In the workflow we train, apply, and

evaluate two decision tree models that predict the creditworthiness of credit

customers. In the top branch, we train the baseline model, while in the bottom branch

we train the model on the bootstrapped training set using the SMOTE technique.

This workflow, Cohen’s Kappa for Evaluating Classification Models, trains two decision trees to predict the

credit score of customers. In the top branch, a baseline model is trained on the unbalanced training data

(90% “good” vs. 10% “bad” class records). In the bottom branch, an improved model is trained on a new

training dataset where the minority class has been oversampled (SMOTE). The workflow available for

download from the KNIME Community Hub.

https://kni.me/w/jFQxQbx_BdIjD_9D

41

Resampling imbalanced Data Limits

Author: Maarit Widmann

Workflow on KNIME Community Hub: Resampling in Supervised Fraud Detection Models

Car parking ticket machines used to only accept coins. A self-service vegetable stand

used to only accept cash. And not such a long time ago I could buy a bus ticket from

the bus driver! These days, however, you can (and you’re often encouraged to) pay for

these and many other products and services by credit card. This leads to more and

more transactions and also to types of transactions that didn’t exist before. Some time

back, a credit card transaction for a vegetable stand would have looked suspicious!

With the increasing variety and volume of credit card usage, fraud is evolving too3. This

is a huge challenge! For automatic fraud detection and prevention, a number of

supervised and unsupervised fraud detection models have been suggested. The

unsupervised methods, such as a neural autoencoder, are anomaly detection models

and don’t require labeled data. The supervised methods, such as a decision tree or a

logistic regression model, require labeled data, which are often not available. Imagine

someone manually recognizing and labeling the transactions as “fraudulent” or

“legitimate”! Another problem is that the fraudulent transactions are very few

compared to the large amounts of legitimate transactions. This imbalance of the target

classes decreases the performance of the decision tree algorithm and of other

classification algorithms4.

In this article, we will work with labeled, highly imbalanced transactions data: For each

fraudulent transaction we have 579 legitimate transactions. We’ll check if we can

improve the performance of a decision tree model by resampling; that is, by artificially

creating more data about fraudulent transactions. Along the way, we’ll explain three

different resampling methods and evaluate their effects on the fraud prevention

application. At the end, we’ll provide a link to a KNIME workflow – an example

implementation of the different resampling methods.

3 "The Nilson Report." HSN Consultants, Inc., November 2019, Issue

1164, https://nilsonreport.com/publication_newsletter_archive_issue.php?issue=1164. Accessed 14 Oct.

2020.

4 "Random Oversampling and Undersampling for Imbalanced Classification" Machine Learning Mastery Pty.

Ltd., January 2020, https://machinelearningmastery.com/random-oversampling-and-undersampling-for-

imbalanced-classification/. Accessed 14 Oct. 2020.

https://kni.me/w/-f-OCJFQtkGUVLeC
https://www.knime.com/
https://nilsonreport.com/publication_newsletter_archive_issue.php?issue=1164
https://machinelearningmastery.com/random-oversampling-and-undersampling-for-imbalanced-classification/
https://machinelearningmastery.com/random-oversampling-and-undersampling-for-imbalanced-classification/

Resampling imbalanced Data Limits

42

Building a Classification Model for Fraud Detection

In our demonstration we use the creditcard.csv data available on Kaggle. The data

consist of 284807 credit card transactions, performed by EU cardholders in September

2013. 492 (0.2%) of the credit card transactions are fraudulent, and the remaining

284315 (99.8%) transactions are legitimate. The data contain a target class column

with possible values fraudulent / legitimate, the time and amount of each transaction,

and 28 principal components generated from the confidential features of the

transactions.

The workflow below shows the steps for accessing, preprocessing, resampling, and

modeling the transactions data. Inside the yellow box, we access the transactions

data, encode the target column from 0/1 to legitimate/fraudulent, and partition the

data into training and test sets using 80/20 split and stratified sampling on the target

column. Inside the orange boxes, we build four different versions of a decision tree

model for fraud detection: a baseline model trained on the original training data plus

three models trained on

• SMOTE oversampled data,

• Bootstrap oversampled data, and

• Bootstrap undersampled data.

This workflow, Resampling in Supervised Fraud Detection Models, accesses and preprocesses transactions

data and implements four different decision tree models for fraud detection: one trained on the original data

and three models trained on resampled data. The workflow is available for download from the KNIME

Community Hub.

https://www.kaggle.com/mlg-ulb/creditcardfraud
https://kni.me/w/-f-OCJFQtkGUVLeC

Resampling imbalanced Data Limits

43

Resampling Techniques

The table below summarizes the resampling methods that we include in our

demonstration:

• oversampling (SMOTE)

• oversampling (Bootstrap)

• undersampling (Bootstrap)

Resampling
method

Description Target class
distribution after

resampling

Oversampling

(SMOTE)

Generate new synthetic fraudulent

transactions until the number of

fraudulent transactions is ca. equal to

the number of legitimate transactions:

1. Select one of the fraudulent

transactions in the training data

randomly

2. Select one of its n nearest

neighbors in the same fraudulent

class randomly

3. Select a random point between

the existing fraudulent

transaction and its nearest

neighbor

• Original data in

yellow

• New synthetic

data in light

patterned yellow

http://www.cs.cmu.edu/afs/cs/project/jair/pub/volume16/chawla02a.pdf

Resampling imbalanced Data Limits

44

Oversampling

(Bootstrap)

Randomly draw with replacement a

sample of fraudulent transactions until

the number of fraudulent transactions

is ca equal to the number of legitimate

transactions

Undersampling

(Bootstrap)

Randomly draw with replacement as

many legitimate transactions as there

are fraudulent transactions

Overview of three resampling methods: SMOTE, oversampling (Bootstrap), and undersampling (Bootstrap).

Effects of Resampling on Fraud Detection

Performance

Resampling has two drawbacks, especially when the target class is as highly

imbalanced as in our case. Firstly, oversampling the minority class might lead

to overfitting, i.e. the model learns patterns that only exist in the particular sample that

has been oversampled. Secondly, undersampling the majority class might lead to

underfitting, i.e. the model fails to capture the general pattern in the data5.

We compare the performances of the baseline model and the models trained on

resampled data in terms of two scoring metrics: recall and precision. The metrics are

explained in detail.

• Recall is the proportion of correctly predicted fraudulent transactions. The higher

the recall, the more fraudulent transactions are prevented by the model.

• Precision is the proportion of actual fraudulent transactions among those

predicted as fraudulent. The higher the precision, the fewer false alarms are

raised by the model.

5 "Oversampling and Undersampling" Medium, September

2010, https://towardsdatascience.com/oversampling-and-undersampling-5e2bbaf56dcf. Accessed 14 Oct.

2020.

https://en.wikipedia.org/wiki/Bootstrapping_(statistics)
https://en.wikipedia.org/wiki/Overfitting
https://towardsdatascience.com/oversampling-and-undersampling-5e2bbaf56dcf

Resampling imbalanced Data Limits

45

The very low precision value 2% for the undersampled model in the bottom right corner

in the table above indicates underfitting: The undersampled model failed to learn the

patterns underlying the legitimate transactions. This seems reasonable considering

that we discarded 99.8% of the legitimate transactions in the undersampling phase!

Indeed, with so few examples in the fraudulent class, the only effect of undersampling

has been to damage the representation of the legitimate class.

If you take a look at the performances obtained via oversampling in the two middle

rows, you can see from their precision value that these models are raising more false

alarms than the model trained on the full original data, while at the same time not

improving the recognition of the pattern underlying the fraudulent transactions. All of

this indicates that the model has overfitted the data.

As you can see, our fraud detection model is over-/underfitting when trained on

resampled data. What is actually happening under the hood?

Demonstrating Over- and Underfitting in Fraud

Detection

Transactions data are confidential, and we can therefore only work with principal

components as predictors of the target class fraudulent/legitimate. In order to better

understand how a resampled model leads to over- or underfitting, let’s imagine we had

some of the following columns in our data, since they often characterize fraudulent

transactions6:

• Shipping address equals billing address: yes/no

• Urgent delivery: yes/no

• Number of different items in the order

• Number of orders of the same item

• Number of credit cards associated with the shipping address

6 https://www.bluefin.com/support/identifying-fraudulent-transactions/

Recall and precision statistics obtained by four decision tree models for

fraud detection, each one trained on a different training set.

https://www.bluefin.com/support/identifying-fraudulent-transactions/

Resampling imbalanced Data Limits

46

Since our training data only contain 394 fraudulent transactions, it could be, for

example, that the majority of them are characterized by exceptionally many orders of

the same item: one for 20 toasters, another for 50 smartphones, yet another for 25

winter coats, and so on. In reality, the fraudulent transactions are much more varying

and continuously evolving. On the contrary, the 227451 legitimate transactions in the

training data represent a huge variety of ways of using the credit card: for a banana,

hotel booking, toaster, car parking, and more!

In the following, we explain how the different resampling methods skew the

transactions data, and how this leads to a deterioration in model performance, as we

saw before.

Oversampling (SMOTE)

The corresponding model has a low precision value (44%) and it therefore raises many

false alarms. The training set contains the original fraudulent transactions plus the

synthetically generated fraudulent transactions within the feature space of the

fraudulent transactions. For example, if we had one fraudulent transaction that

purchases 20 toasters, SMOTE resampling might produce thousands of slightly

different fraudulent transactions that all purchase a toaster. Eventually, all legitimate

transactions that include a toaster would be predicted as fraudulent. This kind of

model is overfitting the training data as illustrated in the figure below.

Oversampling (bootstrap)

This model performs worse than the baseline model in terms of both recall and

precision. The training set contains thousands of exact copies of the original

fraudulent transactions. For example, if we had a fraudulent transaction ordering 20

toasters, all legitimate transactions that ordered 20 items of the same product or a

toaster would be suspicious, because these two features would have characterized so

many fraudulent transactions in the oversampled data. At the same time, the model

would have failed to generalize on large amounts of the same item as suspicious,

Example class predictions generated by an overfitting fraud detection model trained on

SMOTE oversampled data: An arbitrary feature, for example, product=toaster

incorrectly determines fraudulent transactions in new data.

Resampling imbalanced Data Limits

47

emphasizing instead precisely 20 toasters as suspicious. Also this model is overfitting

the training data.

Undersampling (bootstrap)

The model performs almost perfectly in terms of recall (92%), yet the worst in terms of

precision (2%). Since more than 99% of the original transactions are discarded in the

undersampling phase, our training data might only consist of credit card transactions

for food and leave out hotel bookings, car parking, and many others. This kind of

training data is not representative of the real data. Therefore, almost all transactions

are predicted as fraudulent; the model is underfitting.

Diagnosing Problems of Resampling in Fraud

Detection

As our example shows, in this case resampling can’t solve the problem of having too

few fraudulent transactions in the dataset. However, resampling is shown to lead to

performance gain when the a priori distribution is less skewed, for example, in disease

Example class predictions generated by an overfitting fraud detection model trained on Bootstrap

oversampled data: an arbitrary set of features, for example, product=toaster and # of products=20

incorrectly determines fraudulent transactions in new data.

Example class predictions generated by an underfitting fraud detection model trained on Bootstrap

undersampled data: the model predicts all transactions as fraudulent in new data.

Resampling imbalanced Data Limits

48

detection7. Why is resampling failing then, for this credit card transaction dataset with

too few fraudulent transactions in it?

Frauds are perpetrated in a large variety of patterns, and we have only a few fraudulent

transactions in our training data. So fraud patterns are definitely under-represented in

our training set. Resampling doesn’t solve the problem, because it does not increase

the variety of the representation of fraudulent transactions, it just replicates in some

form the fraud patterns represented in the dataset. Thus, the models trained on

resampled data can only perform well in detecting some types of fraud, the types

represented in the training data.

In summary, the class of fraudulent transactions is too under-represented (just 0.2%

of the whole dataset!) to represent a meaningful description of all the fraud patterns

that are out there. Even introducing new similar synthetic fraudulent transactions

cannot significantly change the range of the represented fraudulent transactions.

Conclusions

Transactions data are produced in huge volumes every day. In order to build a

supervised model for fraud detection, they would need to be labeled. The labeling

process, however, in this case, is tricky.

Firstly, even if we had the knowledge to appropriately label fraudulent transactions, the

process would be very resource-intensive. Skillful experts at detecting frauds are rare

and expensive and usually do not spend their time labeling datasets. Even with reliable

and sufficient resources, manual labeling would take a prohibitively long time before a

sufficiently large amount of data would be available.

Secondly, expertise in fraud detection is so scarce, because criminals creatively devise

ever newer fraud schemes, and it is hard to keep up the pace with the newly introduced

patterns. An expert might recognize all types of frauds known till then and still fail at

recognizing the new fraud schemes, most recently created.

Finally, and luckily, there are generally fewer fraudulent transactions than legitimate

transactions. Even after all this manual effort by extremely skillful people, we might

still end up with an insufficient number of data for the fraudulent class.

Those are all reasons why fraud detection is often treated as a rare class problem,

rather than an imbalanced class problem.

Yet, we can try. With this dataset, can we artificially increase the sample size of

fraudulent transactions by resampling the training data? Not really. Resampling can

7 "Machine Learning Resampling Techniques for Class Imbalances" Medium, January

2011, https://towardsdatascience.com/machine-learning-resampling-techniques-for-class-imbalances-

30cbe2415867. Accessed 14 Oct. 2020.

https://towardsdatascience.com/machine-learning-resampling-techniques-for-class-imbalances-30cbe2415867
https://towardsdatascience.com/machine-learning-resampling-techniques-for-class-imbalances-30cbe2415867

Resampling imbalanced Data Limits

49

improve the model performance if the target classes are imbalanced and yet

sufficiently represented. In this case, the problem is really the lack of data. Resampling

is subsequently leading to over- or underfitting rather than to a better model

performance.

This article just aims at giving you an idea of why, in some cases, resampling cannot

work. Of course, better results could be obtained with more sophisticated resampling

methods than those we have introduced in this article, like for example, a combination

of under- and oversampling8. Better results could also be obtained with supervised

algorithms other than the decision tree. Some machine learning supervised algorithms,

such as logistic regression, are less sensitive to class imbalance than the decision

tree, while other algorithms, such as ensemble models, are more robust to overfitting.

Even better results could be obtained with the decision tree, for example by applying

pruning techniques to avoid the overfitting effect or controlling the tree growth.

However, sometimes we must accept that the data is just not sufficient to describe the

minority class. In this case, we must proceed with unlabeled data and try to isolate the

events of the rare class via unsupervised algorithms, such as neural autoencoders,

isolation forest, and clustering algorithms.

This chapter was first published in KDNuggets.

8 How to Combine Oversampling and Undersampling for Imbalanced Classification" Machine Learning

Mastery Pty. Ltd., January 2020, https://machinelearningmastery.com/combine-oversampling-and-

undersampling-for-imbalanced-classification/. Accessed 14 Oct. 2020.

https://www.knime.com/blog/fraud-detection-using-random-forest
https://www.kdnuggets.com/2020/12/resampling-imbalanced-data-limits.html
https://machinelearningmastery.com/combine-oversampling-and-undersampling-for-imbalanced-classification/
https://machinelearningmastery.com/combine-oversampling-and-undersampling-for-imbalanced-classification/

50

Finding an optimal Classification

Threshold based on Cost and Profit

Authors: Alfredo Roccato and Maarit Widmann

Workflow on KNIME Community Hub: Finding an Optimal Classification Threshold based on Cost and Profit

Penalizing and rewarding Classification Results with

a Profit Matrix

Confusion matrix and class statistics summarize the performance of a classification

model: the actual and predicted target class distribution, accuracy of the assignment

into the positive class, and the ability to detect the positive class events. However,

these statistics do not consider the cost of a mistake, that is, a prediction into the

wrong target class.

If the target class distribution is unbalanced, predicting events correctly into the

minority class requires high model performance, whereas predicting events into the

majority class can easily happen by chance. Wouldn't it be useful to take this into

account, and weight the results differently when evaluating the model performance?

Absolutely! However, the final goal of the classification determines whether it makes

sense to introduce a cost to certain types of classification results. Cost is useful when

incorrect predictions into one target class have more serious consequences than

incorrect predictions into the other class(es). Or, put another way, correct predictions

into one class have more favorable consequences than correct predictions into the

other class(es). For example, not detecting a criminal passenger at the airport security

control has more serious consequences than mistakenly classifying a non-threatening

passenger as dangerous. Therefore, these two types of incorrect predictions should

be weighted differently.

No cost is needed if all target classes are equally interesting or important, and the

consequences of a wrong prediction into one target class is as bad as it is for the other

classes. This is the case when we predict the color of a wine, for example, or the gender

of a customer.

https://kni.me/w/h31Ph9oAsYgVscgF
https://www.knime.com/blog/from-modeling-to-scoring-confusion-matrix-and-class-statistics

Finding an optimal Classification Threshold based on Cost and Profit

51

From Model Accuracy to Expected Profit

In addition to accuracy statistics, the performance of a classification model can be

measured by expected profit. The profit is measured in a concrete unit defined by the

final goal of the classification.

When we use classification results in practice, we assign each predicted class a

different treatment: Criminal passengers are arrested, non-threatening passengers are

let through. Risky customers are not extended credit, creditworthy customers are! And

so on. The most desirable classification results produce profit, such as the security of

an airport, or the money that a credit institute makes. We measure this profit in a

predefined unit such as the number of days without a terror alarm, or euros. The most

undesirable results bring about cost - a terror alarm at the airport, or money lost by a

bank - and we measure the cost in the same unit as the profit.

Here, we assess the accuracy and expected profit of a classification model that

predicts the creditworthiness of credit applicants. In a credit scoring application,

predicting individual customer behavior has a consequence in terms of profit (or loss).

Refusing good credit can cause loss of profit margins (commercial risk). Approving

credit for high risk applicants can lead to bad debts (credit risk).

Optimizing Classification Threshold

Our goal here is to find a classification model that maximizes the expected profit. A

classification model predicts a positive class score for each event in the data, which

determines the final class prediction. By default the events are assigned to the positive

class if their score is higher than 0.5, and otherwise to the negative class. If we change

the classification threshold, we change the assignment to the positive and negative

class. Consequently, the values of accuracy and expected profit change as well.

Data

In our credit scoring application, we use the well-known German Credit Data Set, as

taken from the University of California Archive for Machine Learning and Intelligent

Systems.

The dataset is composed of 1000 customers. The input variables are the individual

characteristics of the subjects, like socio-demographic, financial and personal, as well

as those related to the loan, such as the loan amount, the purpose of the subscription,

and wealth indicators. The target is the evaluation of the credit applicant's creditability

by the bank (2 = risky, and 1 = creditworthy).

https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://cml.ics.uci.edu/
https://cml.ics.uci.edu/

Finding an optimal Classification Threshold based on Cost and Profit

52

In this dataset, 700 applicants (70%) are classified as creditworthy and 300 (30%) as

risky.

We refer to the risky customers as the positive class and the creditworthy customers

as the negative class.

Workflow to produce Expected Profit for different

Classification Thresholds

The workflow below shows the process of training a classification model for credit

scoring and evaluating the expected profit for different classification thresholds.

The workflow starts with data access and preprocessing. Next, to assess the

predictive capabilities of the model, it divides the initial dataset into two tables of equal

size, respectively named the training set and the validation set. After that, it trains a

logistic regression model on the training set to predict the applicants’ creditworthiness

as “risky” or “creditworthy”.

The “Profit by threshold” metanode predicts the creditworthiness in the validation set

for varying classification thresholds, starting with a low value of the threshold and

increasing it for each iteration.

Finally, it shows the model performance statistics for different threshold values in an

interactive view as produced by the “Profit Views” component.

Before we look at the results, we introduce the profit matrix that we need to transform

the accuracy statistics into the expected profit.

This workflow, Finding an Optimal Classification Threshold based on Cost and Profit, trains a classification

model for credit scoring and produces the expected profit for varying values of the classification threshold.

The workflow is available for download from the KNIME Community Hub.

https://kni.me/w/h31Ph9oAsYgVscgF

Finding an optimal Classification Threshold based on Cost and Profit

53

Profit Matrix

To evaluate misclassification in terms of expected profit, a profit matrix is requested

for assigning cost to undesirable outcomes.

We introduce a negative cost (-1) to the False Negatives - risky applicants who are

approved a credit - and a positive profit (0.35) to the True Negatives - creditworthy

applicants who are approved a credit. The table below shows the cost and profit values

for these classification results in a profit matrix.

The values of cost and profit introduced above are based on the following hypothesis9:

Let’s assume that a correct decision of the bank would result in 35% profit at the end

of a specific period, say 3-5 years. If the opposite were true, i.e., the bank predicts that

the applicant is creditworthy, but it turns out to be bad credit, then the loss is 100%.

Calculating Expected Profit (Baseline)

The following formulas are used to report the model performance in terms of expected

profit:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑜𝑓𝑖𝑡 𝑝𝑒𝑟 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑛𝑡 = (1 − 𝑝) ∗ 𝑝𝑟𝑜𝑓𝑖𝑡 + 𝑝 ∗ 𝑐𝑜𝑠𝑡,

where 𝑝 is the share of the positive (risky) class applicants of all data.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑝𝑒𝑟 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑛𝑡 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑜𝑓𝑖𝑡 𝑝𝑒𝑟 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑛𝑡 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑙𝑜𝑎𝑛

𝑇𝑜𝑡𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 = 𝑛 ∗ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑝𝑒𝑟 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑛𝑡,

where 𝑛 is the number of credit applicants.

More generally, assuming that the class with negative risk potential is defined as the

positive class, an average profit for a classification model with a profit matrix can be

calculated using the following formula:

9 Wang, C., & Zhuravlev, M. An analysis of profit and customer satisfaction in consumer finance. Case

Studies In Business, Industry And Government Statistics, 2(2), pages 147-156, 2014.

Profit matrix that introduces a profit to the classification results: a cost to

approved bad credits, and a profit to approved good credits.

Finding an optimal Classification Threshold based on Cost and Profit

54

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑜𝑓𝑖𝑡 =
𝑃𝑟𝑜𝑓𝑖𝑡 ∗ 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 − 𝐶𝑜𝑠𝑡∗𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑛
,

where 𝑛 is the number of events in the data.

Let’s say we have 500 credit applicants with an average loan of 10 000 €. 70% of the

applicants are creditworthy and 30% are risky. Then a baseline for the profit statistics

without using any classification model is calculated as follows:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑝𝑟𝑜𝑓𝑖𝑡 𝑝𝑒𝑟 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑛𝑡 = 0.70 ∗ 0.35 + 0.30 ∗ (−1) = −0.055

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑝𝑒𝑟 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑛𝑡 = −0.055 ∗ 10000 € = −550 €

𝑇𝑜𝑡𝑎𝑙 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 = 500 ∗ (−550 €) = −225 000 €

If we approve a credit for all of the applicants, the expected loss is 225,000 €.

Calculating Expected Profit (Varying Thresholds)

Next, let’s calculate what the expected profit is when we evaluate the creditworthiness

using a classification model and we weigh the outcomes with the profit matrix.

The minimum threshold for the positive class to achieve non-zero profit can be

calculated from the cost matrix as10

𝑝∗ =
−𝑃𝑟𝑜𝑓𝑖𝑡𝑇𝑁

−𝑃𝑟𝑜𝑓𝑖𝑡𝑇𝑁+ 𝐶𝑜𝑠𝑡𝐹𝑁
=

−0.35

−0.35+(−1)
= 0.259

This value can be adjusted empirically as described below.

Below you see the workflow inside the “Profit by threshold” metanode. It iterates over

different thresholds to the positive class scores and calculates the corresponding

accuracy statistics and profit measures.

The threshold values range from 0 to 1 with a step size of 0.01. The workflow produces

the overall accuracy for each value of the threshold by comparing the actual (unaltered

10 C. Elkan. The foundations of cost-sensitive learning. In Proceedings of the Seventeenth International Joint

Conference on Artificial Intelligence, pages 973-978, 2001

Producing the accuracy and expected profit for different classification threshold values.

Finding an optimal Classification Threshold based on Cost and Profit

55

in each iteration) and predicted (altered in each iteration) target class values.

Furthermore, in order to calculate the expected profit, it weighs the classification

results from each iteration by the values in the profit matrix.

The output table of this workflow is shown below:

In the output table, every row corresponds to a value of the classification threshold,

together with the corresponding model accuracy statistics and profit measures as

average profit per applicant, average amount per applicant, and total average amount.

Results

The interactive view below shows the output of the “Profit Views” component. It

visualizes the accuracy and profit measures for the varying classification thresholds.

The line plots show how four different model performance indicators develop if the

value of the classification threshold increases from 0 to 1. The performance indicators

are: 1. Overall accuracy (line plot in the top left corner) 2. Total average amount (line

plot in the top right corner), 3. Average profit per applicant (line plot in the bottom left

corner), and 4. Average amount per applicant (line plot in the bottom right corner).

Based on an empirical evaluation, the optimal threshold is 0.51 in terms of overall

accuracy, and 0.27 in terms of expected profit.

The accuracy statistics and profit measures for varying classification thresholds.

Finding an optimal Classification Threshold based on Cost and Profit

56

The table below represents the target class distribution (top 2 rows) and the overall

accuracy and average profit per applicant (bottom 2 rows) of the credit scoring model,

using no model (1st column on the left), and the default and optimized threshold values

(3 columns on the right):

Using the optimized threshold 0.27, we can reach 0.113 profit per applicant. This gives

an average amount of 1,130 € and, based on 500 applicants, a total average amount

of 565,000 €.

The undeniable advantage of using a model is justified by the evidence of 565,000 €

versus -225,000€.

An interactive view to show the development of 1. Overall accuracy, 2. Total

average amount, 3. Average profit per applicant, and 4. Average amount per

applicant when the classification threshold increases from 0 to 1.

Expected profit and overall accuracy when creditworthiness is not predicted at all,

and when it is predicted using the default and optimized classification thresholds.

57

Easy Interpretation of a Logistic

Regression Model with Delta-p

Statistics

Authors: Alfredo Roccato and Maarit Widmann

Workflow on KNIME Community Hub: Assessing Effects of Single Predictors with Delta-p

Key Takeaways

• With Delta-p statistics, the predictions based on a logistic regression model are

easy to understand by non-technical decision-makers.

• Learn how to calculate the Delta-p statistics based on the coefficients of a

logistic regression model for credit application processing.

• Data workflow includes the steps for accessing the raw data to training the

logistic regression model, and evaluating the effects of individual predictor

columns with Delta-p statistics.

• Keep in mind logistic regression might not be the best choice when working with

high dimensional data, with many correlated predictor columns.

Imagine a situation where a credit customer applies for a credit, the bank collects data

about the customer - demographics, existing funds, and so on - and predicts the credit-

worthiness of the customer with a machine learning model. The customer’s credit

application is rejected, but the banker doesn’t know why exactly. Or, a bank wants to

advertise their credits, and the target group should be those who eventually can get a

credit. But who are they?

In these kinds of situations, we would prefer a model that is easy to interpret, such as

the logistic regression model. Delta-p statistics make interpretation of the coefficients

even easier. With Delta-p statistics at hand, the banker doesn’t need a data scientist to

be able to inform the customer, for example, that the credit application was rejected,

because all applicants who apply credit for education purposes have a very low chance

of getting a credit. The decision is justified, the customer is not personally hurt, and he

or she might come back in a few years to apply for a mortgage.

https://kni.me/w/dQwCNoz4SyzPhJdn

Easy Interpretation of a Logistic Regression Model with Delta-p Statistics

58

In this article, we explain how to calculate the Delta-p statistics based on the

coefficients of a logistic regression model. We demonstrate the process from raw data

to model training and model evaluation with a KNIME workflow where each

intermediate step has a visual representation. However, the process could be

implemented in any tool.

Assessing the Effect of a single Predictor with the

Delta-p Statistics

Logistic Regression Model

When we use the logistic regression algorithm for classification, we model the

probability of the target class, for example, the probability of a bad credit rating, with

a logistic function. Let’s say we have a binomial logistic regression model with a target

column y, credit rating, with two classes that are represented by 0 (good credit rating)

and 1 (bad credit rating). The log odds of the target class (𝑦 = 1) vs. the reference

class (𝑦 = 0) is a linear combination 𝛽𝑥 of the predictor columns x (account balance,

credit duration, credit purpose, etc.). A logistic function of 𝛽𝑥 transforms the log odds

into a probability of the target class:

𝑃(𝑦 = 1 | 𝛽𝑥) =
𝑒𝑥𝑝(𝛽𝑥)

1 + 𝑒𝑥𝑝(𝛽𝑥)
,

where 𝛽 is the vector of coefficients for the predictor columns 𝑥 in the logistic

regression model that predicts the target class 𝑦.

The target and reference classes can be arbitrarily chosen. In our case, the target class

is “bad credit rating,” and the reference class is “good credit rating.”

Delta-p Statistics

If the single predictor column 𝑥𝑖 is continuous, the coefficient 𝛽𝑖 corresponds to the

change in the log odds of the target class when 𝑥𝑖 increases by 1. If 𝑥𝑖 is a binomial

column, the coefficient value 𝛽𝑖 is the change in the log odds when 𝑥𝑖 increases from

0 to 1. The Delta-p statistics transforms these coefficient values 𝛽𝑖into values that tell

how much the probability of the target class increases or decreases, as shown below:

https://www.knime.com/
https://en.wikipedia.org/wiki/Logistic_regression
https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/Logit

Easy Interpretation of a Logistic Regression Model with Delta-p Statistics

59

The Delta-p statistics transforms the coefficient values 𝛽𝑖 into percentage effects of

single predictor columns to the probability of the target class compared to an average

data point e.g., an average credit applicant.

By definition, the Delta-p statistic is a measure of the discrete change in the estimated

probability of the occurrence of an outcome given a one-unit change in the

independent variable of interest, with all other variables held constant at their mean

values. For example, if the Delta-p value of a predictor column 𝑥𝑖 is 0.2, then a unit

increase in this column (or a change from 0 to 1 in a binomial column) increases the

probability of the target class by 20 %.

The following formulas show how to calculate the prior and post probabilities of the

target class and, finally, the Delta-p statistics as their difference11:

𝑃𝑝𝑟𝑖𝑜𝑟 = 𝑃(𝑦 = 1)

𝑙𝑜𝑔𝑖𝑡𝑝𝑟𝑖𝑜𝑟 = 𝑙𝑛(
𝑃𝑝𝑟𝑖𝑜𝑟

1 − 𝑃𝑝𝑟𝑖𝑜𝑟

)

𝑙𝑜𝑔𝑖𝑡𝑝𝑜𝑠𝑡 = 𝑙𝑜𝑔𝑖𝑡𝑝𝑟𝑖𝑜𝑟 + 𝛽𝑖

𝑃𝑝𝑜𝑠𝑡 =
𝑒𝑙𝑜𝑔𝑖𝑡𝑝𝑜𝑠𝑡

1 + 𝑒𝑙𝑜𝑔𝑖𝑡𝑝𝑜𝑠𝑡

𝐷𝑒𝑙𝑡𝑎 − 𝑝 = 𝑃𝑝𝑜𝑠𝑡 − 𝑃𝑝𝑟𝑖𝑜𝑟

11 Cruce, T. M. (2009). A Note on the Calculation and Interpretation of the Delta-p Statistic for Categorical

Independent Variables, Research in High Education, 50(6), 608–622

Logistic function modeling the probability of the target class

𝑦 = 1 as a function of one continuous predictor column 𝑥𝑖.

Easy Interpretation of a Logistic Regression Model with Delta-p Statistics

60

Use Case: Effect of Credit Purpose and current Account

Balance on Credit Rating

Let’s now demonstrate this with an example and check how the credit purpose and

balance of an existing account improves or worsens the credit rating. We use the

German credit card data provided by the UCI Machine Learning Repository. The

dataset contains 21 columns that provide information about demographics and

economic conditions of 1,000 credit applicants. Thirty percent of the applicants have

a bad credit rating, and 70% have a good rating. You can download the data in .data

format by clicking “Data Folder” on top of the page and selecting the “german.data”

item on the next page. The german.data file can be opened in a text editor and saved,

for example, in csv format. The column names and descriptions of the values in the

categorical columns are provided in the german.doc file, accessible via the same “Data

Folder” page.

The workflow below shows the process from accessing the raw data to training the

logistic regression model and evaluating the effects of individual predictor columns

with Delta-p statistics.

The process is divided into the following steps, each one implemented within a

separate colored box: Accessing data (1), preprocessing data as required by a logistic

regression model (2), training the model (3), and calculating the Delta-p statistics

based on the model coefficients (4). In the preprocessing step, we convert the target

column from the 1/2 notation to “bad”/“good.” We also transform two originally

multinomial columns into binomial columns: We encode the “checking” column into

two values “negative”/“some funds or no account” based on the status of the existing

bank account. We encode the “purpose” column into values “education”/“no

education” to assess the effect of education as a credit purpose. Finally, we handle

missing values and normalize the numeric columns in the data.

Below, you can see the coefficient statistics of the logistic regression model,

reproducible in any tool. The “Coeff.” column shows the coefficient values for the

different predictor columns, 0.683 for purpose=education. The “P>|z|” column shows

the p-values of the coefficients, 0.055 for purpose=education. This means that

This workflow, Assessing Effects of Single Predictors with Delta-p, includes the process from accessing raw

credit customer data, to training a credit rating model, and to evaluating the effects of predictor columns to

the credit rating with Delta-p statistics. The workflow is available for download from the KNIME Community

Hub.

https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
https://kni.me/w/dQwCNoz4SyzPhJdn

Easy Interpretation of a Logistic Regression Model with Delta-p Statistics

61

education as a credit purpose increases the probability of a bad credit rating, since the

coefficient value is positive, and this effect is significant at 90 % significance level,

since the p-value is smaller than 0.1.

By looking at the coefficient statistics of the logistic regression model, we find out that

education as a credit purpose increases the probability of a bad credit rating compared

to other credit purposes. In addition, the coefficient value 0.683 tells that the log odds

ratio for getting a bad credit rating with/without education as the credit purpose is

0.683, and the odds ratio of the two groups is e0.683=1.979. What would this mean, for

example, in a group of 100 credit applicants, let’s say 20 of them with education as the

purpose (group 1) and the remaining 80 with another purpose (group 2)? If 10 out of

the 80 applicants in the group 2 have a bad credit rating, so their odds is 0.125, then

according to the odds ratio 1.979, the odds for the group 1 must be ~2 times the odds

of the group 2, so 0.25 in this case. Therefore 5 (a quarter) of the applicants in the

group 1 must have a bad credit rating!

The coefficient statistics have a universal scale, and we can use them to compare the

magnitude and the effect of different predictor columns. However, to understand the

effect of a single predictor, the Delta-p statistics provide an easier way! Let’s take a

look:

Coefficient statistics of a logistic regression model that predicts the credit rating

good/bad of a credit applicant.

Delta-p statistics, its intermediate results, and the corresponding coefficient statistics of a logistic

regression model that predicts the credit rating good/bad of a credit applicant.

Easy Interpretation of a Logistic Regression Model with Delta-p Statistics

62

In the output table below you can see the Delta-p statistics and the intermediate results

in calculating it, also shown below for the purpose=education variable:

𝑃𝑝𝑟𝑖𝑜𝑟 = 𝑃(𝑦 = 1) = 0.3

𝑙𝑜𝑔𝑖𝑡𝑝𝑟𝑖𝑜𝑟 = 𝑙𝑛(
𝑃𝑝𝑟𝑖𝑜𝑟

1 − 𝑃𝑝𝑟𝑖𝑜𝑟

) = 𝑙𝑛(
0.3

1 − 0.3
) = −0.847

𝑙𝑜𝑔𝑖𝑡𝑝𝑜𝑠𝑡 = 𝑙𝑜𝑔𝑖𝑡𝑝𝑟𝑖𝑜𝑟 + 𝛽𝑖 = −0.847 + 0.683 = −0.165

𝑃𝑝𝑜𝑠𝑡 =
𝑒𝑙𝑜𝑔𝑖𝑡𝑝𝑜𝑠𝑡

1 + 𝑒𝑙𝑜𝑔𝑖𝑡𝑝𝑜𝑠𝑡
=

𝑒−0.165

1 + 𝑒−0.165
= 0.459

𝐷𝑒𝑙𝑡𝑎 − 𝑝 = 𝑃𝑝𝑜𝑠𝑡 − 𝑃𝑝𝑟𝑖𝑜𝑟 = 0.459 − 0.3 = 0.159

The value 0.159 of the Delta-p statistics indicates that education as a credit purpose

increases the probability of a bad credit rating by 15.9 % compared to an average credit

application.

If we wanted to compare the effect to the opposite situation, i.e., the credit purpose is

not education, instead of an average credit applicant, we would need to recalculate the

prior probability and also mean-center the binomial values of the predictor column of

interest 𝑥𝑖. In our data, 5 % of the people apply the credit for education purposes, so

the mean of the “purpose” column 𝑥𝑖 is 0.05.

𝑙𝑜𝑔𝑖𝑡𝑝𝑟𝑖𝑜𝑟 = 𝑙𝑛(
𝑃𝑦

1 − 𝑃𝑦

) + 𝛽𝑖(0 − 𝑥𝑖) = −0.847 + 0.683 ∗ (−0.05) = −0.881

𝑙𝑜𝑔𝑖𝑡𝑝𝑜𝑠𝑡 = 𝑙𝑛(
𝑃𝑦

1 − 𝑃𝑦

) + 𝛽𝑖(1 − 𝑥𝑖) = −0.847 + 0.683 ∗ 0.95 = −0.199

 𝑃𝑝𝑟𝑖𝑜𝑟 =
𝑒

𝑙𝑜𝑔𝑖𝑡𝑝𝑟𝑖𝑜𝑟

1+𝑒
𝑙𝑜𝑔𝑖𝑡𝑝𝑟𝑖𝑜𝑟

=
𝑒−0.881

1+𝑒−0.881 = 0.293

𝑃𝑝𝑜𝑠𝑡 =
𝑒𝑙𝑜𝑔𝑖𝑡𝑝𝑜𝑠𝑡

1 + 𝑒𝑙𝑜𝑔𝑖𝑡𝑝𝑜𝑠𝑡
=

𝑒−0.199

1 + 𝑒−0.199
= 0.45

𝐷𝑒𝑙𝑡𝑎 − 𝑝 = 𝑃𝑝𝑜𝑠𝑡 − 𝑃𝑝𝑟𝑖𝑜𝑟 = 0.45 − 0.293 = 0.158

The value 0.158 of the Delta-p statistics indicates that the credit applied for education

purposes increases the probability of a bad credit rating by 15.8 % compared to those

who apply it for other purposes. There’s hardly any difference to the previous situation

where we compared against an average applicant and obtained the Delta-p value

0.159. This means that the credit applicants with other purposes than education are

very close to the sample average in terms of their credit rating, apparently because

they make up 95% of the total sample.

Now we know that applying credit for education purposes has a negative effect on the

credit rating. Which column could have a positive effect? Let’s check the effect of the

other dummy column that we created, the “checking” column that tells if the balance

Easy Interpretation of a Logistic Regression Model with Delta-p Statistics

63

of the existing account is negative. The coefficient value of checking=some funds or

no account is -1.063 with a p-value 0, as you can see in the first row in the coefficient

statistics table.

The Delta-p statistics -0.171 in the first row of the output table above show that credit

applicants with no negative account balance tend to have a 17.1 % lower probability of

a bad credit rating than an average credit applicant. Interestingly, we found two

columns, purpose and checking, that have an effect of almost the same size but a

different direction. If we look at the odds ratio of these two variables, we wouldn’t get

the same information at first glance: The odds ratio is 0.345 for checking=some funds

or no account and 1.979 for purpose=education.

Conclusions

In this article, we have introduced Delta-p statistics as a straightforward way of

interpreting the coefficients of a logistic regression model. With Delta-p statistics, the

predictions based on a logistic regression model are easy to understand by non-

technical decision-makers.

We used Delta-p statistics to assess the individual effects that make a credit

application succeed or fail. Of course, the use cases of Delta-p statistics are many

more. For example, we could use Delta-p statistics to determine the individual

touchpoints that decrease or increase the customer satisfaction the most, or to find

the symptoms with the highest relevance, when detecting a disease. Also notice that

not always the whole process from raw data to model training and model evaluation

need to be completed, Delta-p statistics can also be used to re-evaluate the

coefficients of a previously trained logistic regression model.

Delta-p statistics can only be used to assess the individual effects of predictor

columns in a logistic regression model. Logistic regression might not be the best

choice when working with high dimensional data, with many correlated predictor

columns, and columns not correlated with the target column. The target classes also

need to be linearly separable in the feature space.

If you want to replicate the procedure described in the article, one option is to install

the open source KNIME Analytics Platform on their laptops and download the KNIME

workflow attached to the article for free. A visual representation of the workflow is

available on the KNIME Community Hub without installing KNIME Analytics Platform.

Other options are to implement the calculations in any another programming tool, or

even perform them manually with a calculator.

This chapter was first published in InfoQ.

https://en.wikipedia.org/wiki/Linear_separability
https://www.infoq.com/articles/logistic-regression-model-with-delta-p-statistics/

64

Topic Index

B

Binary classification inspector 23

C

Calculate expected profit 53

Churn prediction 15

Classification on imbalanced datasets .. 25

Cohen's kappa ... 33

Credit rating ... 60

Cumulative gain chart 21

D

Delta-p .. 57

Delta-p statistics 58

E

Email classification 1

F

Fraud detection .. 27

L

Lift chart ... 20

Logistic regression 57

Logistic regression model 58

M

Mean absolute error 8

Mean absolute percentage error 8

Mean signed difference............................. 8

Multivariate Classification Model 5

N

Numeric scoring metrics 8

O

Optimal classification threshold 50

Oversampling .. 26

Oversampling (SMOTE)........................... 46

Oversampling bootstrap 46

P

Profit matrix ... 53

R

Resampling .. 41

Resampling techniques 26

ROC curve .. 17

Root mean squared error 8

R-squared .. 8

S

Sensitivity ... 4, 5

SMOTE ... 26

Specificity ... 4, 5

U

Undersampling .. 26

Undersampling bootstrap 47

V

Visual scoring techniques 15

