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Today’s modern data architecture 
stacks look significantly different 
from the data architecture 
models from only a few years 
ago.

Data streaming and stream 
processing have become the 
core components of modern 
data architecture. Real time data 
streams are being managed 
as first-class citizens in data 
processing analytics solutions. 
Some companies are even 
shifting their architecture 
and technology thinking 
from “everything’s at rest” to 
“everything’s in motion.”

Change data capture (CDC) has 
become a critical design pattern 
in data engineering use cases. 
CDC can be used in event-
driven microservices based 
applications, along with data 
streaming to implement robust 
solutions.

The emphasis on data streams  
is also driving innovations in the 
data governance space such as 
the stream catalog and stream 
lineage.

Data mesh architecture, which 
has been getting a lot of attention 
recently, is built on four solid 
principles: domain ownership, 
data as a product, self-serve 
data infrastructure platform, 
and federated governance. Data 
mesh is expected to have a 
huge impact on the overall data 
management programs and 
initiatives in organizations.

Similar to many compute 
services in the cloud platforms, 
data storage services and 
databases now support 
serverless models where you 
only pay for what you use. 

On the security and regulatory 
compliance side, data residency 

http://www.infoq.com/author/Srini-Penchikala
http://www.manning.com/SpringRooinAction) from Manning Publications. Srini
http://www.manning.com/SpringRooinAction) from Manning Publications. Srini


and data sovereignty  are getting 
a lot of attention to ensure the 
consumers’ data is protected and 
privacy is maintained throughout 
the life of the data.

Next-generation data engineering 
innovations will build on these 
recent trends to provide even 
more robust, secure, highly 
available and resilient data 
solutions to the development 
community.

 In the InfoQ “Data Engineering 
Innovations” eMag, you’ll find 
up-to-date case studies and 
real-world data engineering 
solutions from technology SME’s 
and leading data practitioners in 
the industry.

“In-Process Analytical Data 
Management with DuckDB” by 
Dr. Hannes Mühleisen highlights 
the open-source in-process 
OLAP database designed for 
analytical data management, 
how it eliminates the need to 
copy large amounts of data 
over sockets, resulting in 
improved performance. Author 
also discusses the database 
support for Morsel-Driven 
parallelism which allows 
efficient parallelization across 
multiple cores while maintaining 
awareness of multi-core 
processing.

Trista Pan’s article “Create 
Your Distributed Database 
on Kubernetes with Existing 
Monolithic Databases” 
emphasizes the role Kubernetes 

plays in supporting cloud 
native databases and how 
Apache ShardingSphere can 
transform any database to a 
distributed database system, 
while enhancing it with functions 
such as sharding, elastic scaling, 
encryption features, etc. Author 
demonstrates how to deploy 
ShardingSphere-Operator, create 
a sharding table using DistSQL, 
and test the Scaling and HA 
of the ShardingSphere-Proxy 
cluster.

“Design Pattern Proposal for 
Autoscaling Stateful Systems” 
by Rogerio Robetti captures the 
need for proven design patterns 
for autoscaling stateful systems. 
Synchronization of data on new 
nodes is a big challenge when 
scaling up a stateful system. 
Robetti discusses various use 
cases and solution designs that 
can be used as a foundation for 
stateful autonomous scalability 
implementations.

Guy Braunstain’s article titled 
“DynamoDB Data Transformation 
Safety: from Manual Toil to 
Automated and Open Source” 
focuses on data transformation 
as a continuous challenge 
in engineering especially in 
cloud hosted solutions. There 
is a current lack of tools to 
perform data transformations 
programmatically, in an 
automated way. The open 
source utility Dynamo Data 
Transform can be used as a 
data transformation tool for 
DynamoDB based systems.

And “Understanding and Applying 
Correspondence Analysis” 
authored by Maarit Widmann 
& Alfredo Roccato describes 
the simple correspondence 
analysis (CA) technique to 
analyze relationships between 
categorical variables and create 
profiles based on the projections 
of the original variables to the 
new dimensions that it creates. 
The authors demonstrate how 
to perform Correspondence 
Analysis with steps like data 
collection, data preprocessing, 
computing CA, and interpreting 
the results, all using the KNIME 
open-source analytics platform

We hope that you find value in 
the articles and resources in 
this eMag and are able to apply 
some of these design patterns 
and techniques in your own 
data engineering projects and 
initiatives.

We would love to receive your 
feedback via editors@infoq.com 
or on Twitter about this eMag. 
I hope you have a great time 
reading it!
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In-Process Analytical Data Management 
with DuckDB
by Hannes Mühleisen, Co-founder and CEO @ DuckDB Labs|Co-Creator of DuckDB

Why did I embark on the journey 
of building a new database? 
It started with a statement by 
the well-known statistician 
and software developer Hadley 
Wickham:

If your data fits in memory there 
is no advantage to putting it in a 
database: it will only be slower 
and more frustrating.

This sentiment was a blow 
and a challenge to database 
researchers like myself. What are 
the aspects that make databases 
slow and frustrating? The first 
culprit is the client-server model.

When conducting data analysis 
and moving large volumes of 
data into a database from an 
application, or extracting it from 
a database into an analysis 
environment like R or Python, the 
process can be painfully slow.

I tried to understand the origins 
of the client-server architectural 
pattern, and I authored the paper, 
“Don’t Hold My Data Hostage 
– A Case For Client Protocol 
Redesign”.

Comparing the database client 
protocols of various data 
management systems, I timed 
how long it took to transmit a 

fixed dataset between a client 
program and several database 
systems.

As a benchmark, I used 
the Netcat utility to send the 
same dataset over a network 
socket.

Compared to Netcat, transferring 
the same volume of data with 
MySQL took ten times longer, and 
with Hive and MongoDB, it took 
over an hour. The client-server 
model appears to be fraught with 
issues.

https://www.infoq.com/articles/analytical-data-management-duckdb/
https://hadley.nz/
https://hadley.nz/
https://vldb.org/pvldb/vol10/p1022-muehleisen.pdf
https://vldb.org/pvldb/vol10/p1022-muehleisen.pdf
https://vldb.org/pvldb/vol10/p1022-muehleisen.pdf
https://netcat.sourceforge.net/
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SQLite
My thoughts then turned to 
SQLite. With billions and billions  
of copies existing in the wild, 
SQLite is the most extensively 
used SQL system in the world. 
It›s quite literally everywhere: 
you›re daily engaging with 
dozens, if not hundreds, of 
instances unbeknownst to you.

SQLite operates in-process, a 
different architectural approach 
integrating the database 
management system directly into 
a client application, avoiding the 
traditional client-server model. 

Data can be transferred within 
the same memory address space, 
eliminating the need to copy and 
serialize large amounts of data 
over sockets.

However, SQLite isn’t designed 
for large-scale data analysis and 
its primary purpose is to handle 
transactional workloads.

DuckDB
Several years ago, Mark 
Raasveldt and I began working 
on a new database, DuckDB. 
Written entirely in C++, DuckDB 
is a database management 
system that employs a vectorized 
execution engine. It is an in-
process database engine and we 
often refer to it as the ‘SQLite for 
analytics’. Released under the 
highly permissive MIT license, 
the project operates under the 
stewardship of a foundation, 
rather than the typical venture 
capital model.

What does interacting with 
DuckDB look like?

import duckdb
duckdb.sql(‘LOAD httpfs’)
duckdb.sql(“SELECT * FROM ‘https://
github.com/duckdb/duckdb/blob/
master/data/parquet-testing/
userdata1.parquet’”).df()

In these three lines, DuckDB is 
imported as a Python package, 
an extension is loaded to enable 
communication with HTTPS 
resources, and a Parquet file is 

read from a URL and converted 
back to a Panda DataFrame (DF).

DuckDB, as demonstrated in this 
example, inherently supports 
Parquet files, which we consider 
the new CSV. The LOAD httpfs 
call illustrates how DuckDB can 
be expanded with plugins.

There’s a lot of intricate work 
hidden in the conversion to DF, 
as it involves transferring a result 
set, potentially millions of lines. 
But as we are operating in the 
same address space, we can 
bypass serialization or socket 
transfer, making the process 
incredibly fast.

We’ve also developed a 
command-line client, complete 
with features like query 
autocompletion and SQL syntax 
highlighting. For example, I can 
initiate a DuckDB shell from my 
computer and read the same 
Parquet file:

If you consider the query:

SELECT * FROM userdata.parquet;

you realize that would not 
typically work in a traditional SQL 
system, as userdata.parquet is 
not a table, it is a file. The table 
doesn’t exist yet, but the Parquet 
file does. If a table with a specific 
name is not found, we search 
for other entities with that name, 

Figure 1: Comparing different clients; the dashed line is the wall clock 
time for netcat to transfer a CSV of the data

https://www.sqlite.org/mostdeployed.html
https://www.linkedin.com/in/mark-raasveldt-256b9a70/
https://www.linkedin.com/in/mark-raasveldt-256b9a70/
https://duckdb.org/
https://duckdb.org/foundation/
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such as a Parquet file, directly 
executing queries on it.

In-Process Analytics
From an architectural standpoint, 
we have a new category of data 
management systems: in-
process OLAP databases. 
SQLite is an in-process system, 
but it is geared toward OLTP 
(Online Transaction Processing). 
When you think of a traditional 
client-server architecture for 
OLTP, PostgreSQL is instead the 
most common option.

Figure 2: OLTP versus OLAP

On the OLAP side, there have 
been several client-server 
systems, with ClickHouse being 
the most recognized open-
source option. However, before 
the emergence of DuckDB, there 
was no in-process OLAP option.

Technical Perspective of DuckDB
Let’s discuss the technical 
aspects of DuckDB, walking 
through the stages of processing 
the following query in Figure 3.

The example involves selecting a 
name and sum from the joining 
of two tables, customer, and sale 
that share a common column, 
cid. The goal is to compute the 
total revenue per customer, 
summing up all revenue 

and including tax for each 
transaction.

When we run this query, the 
system joins the two tables, 
aggregating customers based 
on the value in the cid column. 
Then, the system computes the 
revenue + tax projection, followed 
by a grouped aggregation by cid, 
where we compute the first name 
and the final sum.

DuckDB processes this query 
through standard phases: query 
planning, query optimization, and 
physical planning, and the query 
planning stage is further divided 
into so-called pipelines.

For example, this query has three 
pipelines, defined by their ability 
to be run in a streaming fashion. 
The streaming ends when we 
encounter a breaking operator, 
that is an operator that needs to 

retrieve the entire input before 
proceeding.

Figure 4: First pipeline

The first pipeline scans the 
customer table and constructs 
a hash table. The hash join is 
split into two phases, building 
the hash table on one side of the 
join, and probing, which happens 
on the other side. The building 
of the hash table requires seeing 
all data from the left-hand side 
of the join, meaning we must 
run through the entire customer 
table and feed all of it into the 
hash join build phase. Once this 

Figure 3: A simple select query on DuckDB

https://clickhouse.com/
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pipeline is completed, we move 
to the second pipeline.

Figure 5: Second pipeline

The second pipeline is larger 
and contains more streaming 
operators: it can scan the sales 
table, and look into the hash table 
we›ve built before to find join 
partners from the customer table. 
It then projects the revenue + tax 
column and runs the aggregate, 
a breaking operator. Finally, we 
run the group by build phase and 
complete the second pipeline.

Figure 6: Third pipeline

We can schedule the third and 
final pipeline hat reads the 
results of the GROUP BY and 
outputs the result. This process 
is fairly standard and many 

database systems take a similar 
approach to query planning.

Row-at-a-time
To understand how DuckDB 
processes a query, let’s consider 
first the traditional Volcano-style 
iterator model that operates 
through a sequence of iterators: 
every operator exposes an 
iterator and has a set of iterators 
as its input.

The execution begins by trying 
to read from the top operator, in 
this case, the GROUP BY BUILD 
phase. However, it can’t read 
anything yet as no data has been 
ingested. This triggers a read 
request to its child operator, the 
projection, which reads from its 
child operator, the HASH JOIN 
PROBE. This cascades down until 
it finally reaches the sale table. 
The sale table generates a tuple, 
for example, 42, 1233, 

422, representing the ID, revenue, 
and tax columns. This tuple then 
moves up to the HASH JOIN 
PROBE, which consults its built 
hash table. For instance, it knows 
that ID 42 corresponds to the 
company ASML and it generates 
a new row as the join result, 
which is ASML, 1233, 422.

This new row is then processed 
by the next operator, the 
projection, which sums up the 
last two columns, resulting in 
a new row: ASML, 1355. This 
row finally enters the GROUP BY 
BUILD phase.

This tuple-at-a-time, row-at-
a-time approach is common 
to many database systems 
such as PostgreSQL, MySQL, 
Oracle, SQL Server, and SQLite. 
It’s particularly effective for 
transactional use cases, where 
single rows are the focus, 

Figure 7: Volcano-style iterator model
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but it has a major drawback 
in analytical processing: it 
generates significant overhead 
due to the constant switching 
between operators and iterators.

One possible improvement 
suggested by the literature is 
to just-in-time (JIT) compile 
the entire pipeline. This option, 
though viable, isn’t the only one.

Vector-at-a-time
Let’s consider the operation of 
a simple streaming operator like 
the projection.

We have an incoming row 
and some pseudocode: input.
readRow reads a row of input, the 
first value remains unchanged, 

and the second entry in the 
output becomes the result of 
adding the second and third 
values of the input, with the 
output then written. While this 
approach is easy to implement, it 
incurs a significant performance 
cost due to function calls for 
every value read.

An improvement over the row-
at-a-time model is the vector-
at-a-time model, first proposed 
in “MonetDB/X100: Hyper-
Pipelining Query Execution” in 
2005.

This model processes not just 
single values at a time, but short 
columns of values collectively 
referred to as vectors. Instead 

of examining a single value for 
each row, multiple values are 
examined for each column at 
once. This approach reduces the 
overhead as type switching is 
performed on a vector of values 
instead of a single row of values.

The vector-at-a-time model 
strikes a balance between 
columnar and row-wise 
executions. While columnar 
execution is more efficient, it 
can lead to memory issues. By 
limiting the size of columns to 
something manageable, the 
vector-at-a-time model avoids 
JIT compilation. It also promotes 
cache locality, which is critical for 
efficiency.

The importance of cache locality 
is illustrated by the well-known 
Latency Numbers Everyone 
Should Know, Figure 10.

The graphic, provided by 
Google’s Peter Norvig and Jeff 
Dean, highlights the disparity 
between the L1 cache reference 
(0.5 nanoseconds) and the 
main memory reference (100 
nanoseconds), a factor of 200. 

Given that L1 cache reference 
has become 200 times faster 
since 1990 compared to memory 
reference, which is only twice 
as fast, there’s a significant 
advantage in having operations 
fit within the CPU cache.

This is where the beauty of 
vectorized query processing lies.

Figure 8: Implementation of a projection

Figure 9: The vector-at-a-time model

https://www.cidrdb.org/cidr2005/papers/P19.pdf
https://www.cidrdb.org/cidr2005/papers/P19.pdf
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832
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Let’s consider the same 
projection of revenue + tax 
example we discussed before. 
Instead of retrieving a single row, 
we get as input three vectors of 
values and output two vectors 
of values. We read a chunk (a 
collection of small vectors of 
columns) instead of a single 
row. As the first vector remains 
unchanged, it’s reassigned to 
the output. A new result vector 
is created, and an addition 
operation is performed on every 
individual value in the range from 
0 to 2048.

This approach allows the 
compiler to insert special 
instructions automatically and 
avoids function call overhead 

by interpreting and switching 
around data types and operators 
only at the vector level. 

This is the core of vectorized 
processing.

Exchange-Parallelism
Vectorized processing being 
efficient on a single CPU is not 
enough, it also needs to perform 
well on multiple CPUs. How can 
we support parallelism?

Goetz Graefe, principal scientist 
at Google, in his paper “Volcano - 
An Extensible and Parallel Query 
Evaluation System” described the 
concept of exchange operator 
parallelism.

In this example, three partitions 
are read simultaneously. Filters 
are applied and values are 
pre-aggregated, then hashed. 
Based on the values of the 
hash, the data is split up, further 
aggregated, re-aggregated, and 
then the output is combined. 
By doing this, most parts of the 
query are effectively parallelized.

For instance, you can observe 
this approach in Spark’s 
execution of a simple query. 
After scanning the files, a 
hash aggregate performs a 
partial_sum. 

Then, a separate operation 
partitions the data, followed by 
a re-aggregation that computes 
the total sum. However, this has 
been proven to be problematic in 
many instances.

Figure 10: Latency Numbers Everyone Should Know

Figure 11: Implementation of a projection with vectorized query processing

Figure 12: Exchange operator 
parallelism
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Morsel-Driven Parallelism
A more modern model for 
achieving parallelism in SQL 
engines is Morsel-Driven 
parallelism. As in the approach 
above, the input level scans are 
divided, resulting in partial scans. 
In our second pipeline, we have 
two partial scans of the sale 
table, with the first one scanning 
the first half of the table and the 
second one scanning the latter 
half.

The HASH JOIN PROBE remains 
the same as it still operates on 
the same hash table from the 
two pipelines. The projection 
operation is independent, and 
all these results sync into the 
GROUP BY operator, which is our 
blocking operator. Notably, you 
don›t see an exchange operator 
here.

Unlike the traditional exchange 
operator-based model, 

the GROUP BY is aware of the 
parallelization taking place and 
is equipped to efficiently manage 
the contention arising from 
different threads reading groups 
that could potentially collide. In 
Morsel-Driven parallelism, the 
process begins (Phase 1) with 
each thread pre-aggregating its 
values. The separate subsets or 
morsels of input data, are built 
into separate hash tables.

The next phase (Phase 
2) involves partition-wise 
aggregation: in the local hash 
tables, data is partitioned based 
on the radixes of the group keys, 
ensuring that each hash table 
cannot contain keys present in 
any other hash table. When all 
the data has been read and it’s 
time to finalize our hash table 
and aggregate, we can select 
the same partition from each 
participating thread and schedule 
more threads to read them all.

Though this process is more 
complex than a standard 
aggregate hash table, it allows 
the Morsel-Driven model to 
achieve great parallelism. This 
model efficiently constructs 
an aggregation over multiple 
inputs, circumventing the issues 
associated with the exchange 
operator.

Simple Benchmark
I conducted a simple benchmark, 
using our example query with 
some minor added complexity in 
the form of an ORDER BY and a 
LIMIT clause. The query selects 

Figure 13: Morsel-Driven parallelism

Figure 14: Partitioning hash tables for parallelized merging
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the name and the sum of revenue 
+ tax from the customer and 
sale tables, which are joined and 
grouped by the customer ID.

The experiment involved two 
tables: one with a million 
customers and another with a 
hundred million sales entries. 
This amounted to about 1.4 
gigabytes of CSV data, which is 
not an unusually large dataset.

DuckDB completed the query on 
my laptop in just half a second. 
On the other hand, PostgreSQL, 
after I had optimized the 
configuration, took 11 seconds to 
finish the same task. With default 
settings, it took 21 seconds.

While DuckDB could process the 
query around 40 times faster 
than PostgreSQL, it’s important 
to note that this comparison is 
not entirely fair, as PostgreSQL 
is primarily designed for OLTP 
workloads.

Conclusions
The goal of this article is to 
explain the design, functionality, 
and rationale behind DuckDB,  
a data engine encapsulated in 
a compact package. DuckDB 
functions as a library linked 
directly to the application 

process, boasting a small 
footprint and no dependencies 
and allowing developers to 
easily integrate a SQL engine for 
analytics.

I highlighted the power of in-
process databases, which lies 
in their ability to efficiently 
transfer result sets to clients and 
write data to the database. An 
essential component of 

DuckDB’s design is vectorized 
query processing: this technique 
allows efficient in-cache 
operations and eliminates the 
burden of the function call 
overhead.

Lastly, I touched upon DuckDB’s 
parallelism model: Morsel-
Driven parallelism supports 
efficient parallelization across 
any number of cores while 
maintaining awareness of multi-
core processing, contributing to 
DuckDB’s overall performance 
and efficiency.

Figure 15: The simple benchmark
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How Disney+ Hotstar Modernized its Data 
Architecture for Scale

SPONSORED ARTICLE  

by Cynthia Dunlop, Senior Director of Content Strategy @ ScyllaDB

Try ScyllaDB Cloud with your 
projects - 30 days free.

Disney+ Hotstar, India’s most 
popular streaming service, 
accounts for 40% of the global 
Disney+ subscriber base. 

Disney+ Hotstar offers over 
100,000 hours of content on 
demand, as well as livestreams 
of the world’s most watched 
sporting events.

The “Continue Watching” feature 
is critical to the on demand 
streaming experience for the 
300 million-plus monthly active 
users. That’s what lets you 
pause a video on one device and 
instantly pick up where you left 
off on any device, anywhere in 
the world. It’s also what entices 
you to binge-watch your favorite 
series: complete one episode of a 
show and the next one just starts 
playing automatically.

However, it’s not easy to make 
things so simple. In fact, the 
underlying data infrastructure 
powering this feature had grown 
overly complicated. It was 
originally built on a combination 
of Redis and Elasticsearch, 
connected to an event processor 
for Apache Kafka streaming 
data. Having multiple data stores 
meant maintaining multiple data 

models, making each change 
a huge burden. Moreover, data 
doubling every six months 
required constantly increasing 
the cluster size, resulting in yet 
more admin and soaring costs.

Previous architecture: Here’s 
how the “Continue Watching” 
functionality was originally 
architected. 

First, the user’s client would 
send a “watch video” event to 
Kafka. From Kafka, the event 
would be processed and saved 
to both Redis and Elasticsearch. 
If a user opened the home page, 
the backend was called, and 
data was retrieved from Redis 
and Elasticsearch. Their Redis 
cluster held 500 GB of data, and 
the Elasticsearch cluster held 20 
terabytes.

Their key-value data ranged 
from 5 to 10 kilobytes per event. 
Once the data was saved, an 
API server read from the two 
databases and sent values 
back to the client whenever the 
user next logged in or resumed 
watching. Redis provided 
acceptable latencies, but the 
increase in data size meant that 
they needed to horizontally scale 

their cluster. This increased 
their cost every three to four 
months. Elasticsearch latencies 
were on the higher end of 200 
milliseconds. Moreover, the 
average cost of Elasticsearch 
was quite high considering the 
returns. They often experienced 
issues with node maintenance 
and manual effort was required 
to resolve the issues. 

Modernized architecture: First, 
the team adopted a new data 
model that could suit both use 
cases. Then, they set out to 
adopt a new database. Apache 
Cassandra, Apache HBase, 
Amazon DynamoDB, and 
ScyllaDB were considered. The 
team selected ScyllaDB for two 
key reasons. 1) Consistently 
low latencies for both reads 
and writes, which would ensure 
a snappy user experience for 
today’s demanding customers. 2) 
ScyllaDB Cloud, a fully managed 
database as a service (NoSQL 
DBaaS), offered a much lower 
cost than the other options they 
considered.

https://www.infoq.com/url/t/de171f6c-2e1c-43d4-a284-5fd54c529657/?label=ScyllaDB-eMag-Article
https://www.infoq.com/url/t/de171f6c-2e1c-43d4-a284-5fd54c529657/?label=ScyllaDB-eMag-Article
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Create Your Distributed Database on 
Kubernetes with Existing Monolithic 

by Trista Pan, CTO & Co-founder of SphereEx

Background
Most of the recent convenience 
upgrades that have blessed 
peoples’ lives in the 21st 
century can be traced back to 
the widespread adoption of the 
Internet.

Constant connectivity at our 
fingertips improved our lives, 
and created new technical 
infrastructure requirements 
to support high-performance 
Internet services. Developers 
and DevOps teams have become 
focused on ensuring the backend 
infrastructure’s availability, 
consistency, scalability, 

resilience, and fully automated 
management.

Examples of issues that tech 
teams are constantly struggling 
with include managing and 
storing large amounts of 
business data and creating 
the conditions to ensure that 
infrastructures deliver optimal 
service to the applications. 

Also, designing technical 
architecture while thinking ahead 
to meet future requirements and 
evolving modern applications to 
be able to “live” in the cloud.

The cloud is game-changing 
technology, and if you haven’t 
yet, you should get familiar with 
it. It has already transformed 
infrastructure as we know it, 
from development to delivery, 
deployment, and maintenance. 

Nowadays, modern applications 
are embracing the concept of 
anything-as-a-service from 
various cloud vendors, and 
developer and operations teams 
are considering upgrading legacy 
workloads to future cloud-native 
applications.

Create Your Distributed Database on Kubernetes 
with Existing Monolithic Databases

https://www.infoq.com/articles/kubernetes-databases-apache-sharding-sphere/
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Microservices on Kubernetes
To address the challenges 
mentioned above, we are 
witnessing an evolution of the 
application layer from monolithic 
services to microservices. By 
dividing a single monolithic 
service into smaller units, 
modern applications can become 
independent of one another while 
eliminating unwanted effects of 
development, deployment, and 
upgrading.

Moreover, to decouple and 
simplify communication services, 
such as APIs and calls, service 
mesh appeared and took over. 
Kubernetes provides an abstract 
platform and mechanism for 
this evolution, explaining its 
popularity.

If I had to pinpoint the reason 
why Kubernetes is so popular, I’d 
say that it’s because, according 
to the Kubernetes docs:

Kubernetes provides you with 
a framework to run distributed 
systems resiliently. It takes care 
of scaling and failover for your 
application, provides deployment 
patterns, and more. For example, 
Kubernetes can easily manage 
a canary deployment for your 
system. (From “Why you need 
Kubernetes and what it can do” 
section.)

Kubernetes is an ideal platform 
for managing the microservice’s 
lifecycle, but what about the 
database, a stateful service?

Databases
The application layer has 
adopted microservices as the 
solution to address the issues 
previously introduced here. Still, 
when it comes to the database 
layer, the situation is a little 
different.

To answer the pain points 
we raised, we can look at the 
database layer. It uses a different 
method, yet somewhat similar: 
sharding, a.k.a. distributed 
architecture.

Currently, this distributed 
architecture is ubiquitous, 
whether we’re talking about 
NoSQL databases, such 
as MongoDB, Cassandra, 
Hbase, DynamoDB, or 
NewSQL databases, such 
as CockroachDB, Google 
Spanner, Aurora, and so forth. 
Distributed databases require 
splitting the monolithic one 
into smaller units, or shards, for 
higher performance, improved 
capability, elastic scalability, etc.

One thing all of these database 
vendors have in common is 
that they all must consider 
historical migration to streamline 
this evolution process. They 
all provide data migration 
from existing Oracle, MySQL, 
PostgreSQL, and SQLServer 
databases, just to name a few, 
to their new database offerings. 
That’s why CockroachDB is 
compatible with the PostgreSQL 
protocol, Vitess provides a 
sharding feature for MySQL, or 

AWS has Aurora-MySQL and 
Aurora-PostgreSQL.

Database on Cloud and 
Kubernetes
The advent of the cloud 
represents the next challenge 
for databases. Cloud platforms 
that are “go-on-demand,” 
“everything-as-a-service,” 
or “out-of-box” are currently 
changing the tech world.

Consider an application 
developer. To stay on pace with 
the current trends, the developer 
adheres to the cloud-native 
concept and prefers to deliver 
the applications on the cloud 
or Kubernetes. Does this mean 
it is time for databases to be 
on the cloud or Kubernetes? 
The majority of readers 
would probably answer with a 
resounding yes - which explains 
why the market share of the 
Database-as-a-service (DBaaS) 
is steadily increasing.

Nevertheless, if you’re from the 
buy side for these services, you 
may wonder which vendor can 
promise you indefinite support. 
The truth is that nobody can 
give a definitive answer, so 
multi-cloud comes to mind, and 
databases on Kubernetes seem 
to have the potential to deliver on 
this front.

This is because Kubernetes is 
essentially an abstraction layer 
for container orchestration 
and is highly configurable and 
extensible, allowing users to 

https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/
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do custom coding for their 
specific scenarios. Volumes on 
Kubernetes, for example, are 
implemented and provided by 
many cloud vendors. If services 
are deployed on Kubernetes, 
applications will be able to 
interact with Kubernetes rather 
than different types of specific 
cloud services or infrastructure. 
This philosophy has already 
proven to work well in the case 
of stateless applications or 
microservices. As a result of 
these successful cases, people 
are thinking about how to put 
databases on Kubernetes to 
become cloud neutral.

A drawback to this solution is 
that it is more difficult to manage 
than the application layer, as 
Kubernetes is designed for 
stateless applications rather 
than databases and stateful 
applications. Many attempts 
to leverage Kubernetes’ 
fundamental mechanisms, such 
as StatefulSet and Persistent 
Volume, overlay their custom 
coding to address the database 
challenge on Kubernetes. 
This approach can be seen 
in operators of MongoDB, 
CockroachDB, PostgreSQL, and 
other databases.

Database Compute-Storage 
Architecture
This approach has become 
common, but is it the only 
one? My answer is no, and the 
following content will introduce 
you to and demonstrate another 
method for converting your 

existing monolithic database into 
a distributed database system 
running on Kubernetes in a more 
cloud-native pattern.

With the help of the following 
illustration, let’s first consider 
why this is possible.

As you can see from the 
illustration, the database has 
two capabilities: computing and 
storage.

MySQL, PostgreSQL, and other 
single-node databases combine 
or deploy two components on a 
single server or container.

Apache ShardingSphere
Apache ShardingSphere is the 
ecosystem to transform any 
database into a distributed 
database system and enhance 
it with sharding, elastic scaling, 
encryption features, and 
more. It provides two clients, 
ShardingSphere-Proxy and 
ShardingSphere-Driver.

ShardingSphere-Proxy is a 
transparent database proxy that 
acts as a MySQL or PostgreSQL 
database server while 
supporting sharding databases, 
traffic governance (e.g., read/
write splitting), automatically 
encrypting data, 

SQL auditing, and so on. All of its 
features are designed as plugins, 
allowing users to leverage 
DistSQL (Distributed SQL) or a 
YAML configuration to select 
and enable only their desired 
features.

ShardingSphere-JDBC is a 
lightweight Java framework that 
brings additional features to 
Java’s JDBC layer. This driver 
shares most of the same features 
with ShardingSphere-Proxy.

As I’ve introduced earlier, if we 
view monolithic databases as 
shards (aka storage nodes) 
and ShardingSphere-Proxy or 
ShardingSphere-JDBC as the 

https://shardingsphere.apache.org/
https://www.mysql.com/
https://www.postgresql.org/
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global server (aka computing 
node), then ultimately, the result 
is a distributed database system. 
It can be graphically represented 
as follows:

Because ShardingSphere-
Proxy acts as a MySQL or 
PostgreSQL server, there is no 
need to change the connection 
method to your legacy databases 
while ShardingSphere-JDBC 
implements the JDBC standard 
interface. This significantly 
minimizes the learning curve and 
migration costs.

Furthermore, ShardingSphere 
provides DistSQL, a SQL-style 
language for managing your 
sharding database and 

dynamically controlling these 
distributed database system’s 
workloads, such as SQL audit, 
read/writing splitting, authority, 
and so on.

For example, you may use 
`CREATE TABLE t_order ()` SQL 
to create a new table in MySQL. 
With ShardingSphere-Proxy, 
`CREATE SHARDING TABLE RULE 
t-order ()` will help you create 
a sharding table in your newly 
upgraded distributed database 
system.

ShardingSphere-On-Cloud
So far, we’ve solved the sharding 
problem, but how do we 
make it work on Kubernetes? 
ShardingSphere-on-cloud 

provides ShardingSphere-
Operator-Chart and 
ShardingSphere-Chart to help 
users deploy ShardingSphere-
Proxy and ShardingSphere-
Operator clusters on Kubernetes.

ShardingSphere-Chart and 
ShardingSphere-Operator-Chart
Two Charts help users deploy the 
ShardingSphere-Proxy cluster, 
including proxies, governance 
center, and Database connection 
driver, and ShardingSphere-
Operator using helm commands.

ShardingSphere-Operator
ShardingSphere-
Operator is a predefined 
CustomResourceDefinition that 
describes ShardingSphere-Proxy 
Deployment on Kubernetes. 
Currently, this operator provides 
HPA (Horizontal Pod Autoscaler) 
based on CPU metric and 
ensures ShardingSphere-Proxy 
high availability to maintain 
the desired replica number. 
Thanks to community feedback, 
throughout development 
iterations, we’ve found out that 
autoscaling and availability are 
our users’ foremost concerns. 
In the future, the open-source 
community will release even 
more useful features.

New solution
Users can easily deploy and 
manage ShardingSphere clusters 
and create their distributed 
database system on Kubernetes 
using these tools, regardless of 
where their monolithic databases 
reside.

https://github.com/apache/shardingsphere-on-cloud
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As previously stated, a database 
is made up of computing 
nodes and storage nodes. A 
distributed database will divide 
and distribute these nodes. 
As a result, you can use your 
existing databases as the new 
distributed database system’s 
storage nodes. The highlight of 
this solution is adopting a flexible 
computing-storage-splitting 
architecture, utilizing Kubernetes 
to manage stateless computing 
nodes, allowing your database to 
reside anywhere and drastically 
reducing upgrading costs.

ShardingSphere-Proxy will act 
as global computing nodes to 
handle user requests, obtain 
local resultSet from the sharded 
storage nodes, and compute the 
final resultSet for users. This 
means there is no need to do 
dangerous manipulation work on 
your database clusters. You only 
have to import ShardingSphere 
into your database infrastructure 
layer and combine databases 
and ShardingSphere to make it a 
distributed database system.

ShardingSphere-Proxy is a 
stateless application that is 
best suited to being managed 
on Kubernetes. As a stateful 
application, your databases can 
run on Kubernetes, any cloud, or 
on-premise.

On the other hand, 
ShardingSphere-Operator serves 
as a manual operator working on 
Kubernetes to offer availability 
and auto-scaling features for 

the ShardingSphere-Proxy 
cluster. Users can scale-in or 
scale-out ShardingSphere-
Proxy (computing nodes) and 
Databases (storage nodes) as 
needed. For example, some users 
simply want more computing 
power, and ShardingSphere-
Operator will automatically scale 
out ShardingSphere-Proxy in 
seconds. Others may discover 
that they require more storage 
capacity; in this case, they 
simply need to spin up more 
empty database instances and 
execute a DistSQL command. 
ShardingSphere-Proxy will 
reshard the data across these old 
and new databases to improve 
capacity and performance.

Finally, ShardingSphere can 
assist users in resolving the 
issue of smoothly sharding 
existing database clusters and 
taking them into Kubernetes 
in a more native manner. 
Instead of focusing on how to 
fundamentally break the current 
database infrastructure and 
seeking a new and suitable 
distributed database that 
can be managed efficiently 
on Kubernetes as a stateful 
application, why don’t we 
consider this issue from the 
other side. How can we make 
this distributed database system 
more stateless and leverage the 
existing database clusters? Let 
me show you two examples of 
real-world scenarios.

Databases on Kubernetes
Consider that you have already 
deployed databases, such as 
MySQL and PostgreSQL, to 
Kubernetes using Helm charts or 
other methods and that you are 
now only using ShardingSphere 
charts to deploy ShardingSphere-
Proxy and ShardingSphere-
Operator clusters.

Once the computing nodes have 
been deployed, we connect to 
ShardingSphere-Proxy in the 
original way to use DistSQL to 
make Proxy aware of databases. 
Finally, the distributed computing 
nodes connect the storage nodes 
to form the final distributed 
database solution.

Databases on cloud or 
on-premise
If you have databases on the 
cloud or on-premises, the 
deployment architecture will 
be as shown in the image 
below. The computing nodes, 
ShardingSphere-Operator and 
ShardingSphere-Proxy, are 
running on Kubernetes, but your 
databases, the storage nodes, are 
located outside of Kubernetes.

Pros and Cons
We’ve seen a high-level 
introduction to ShardingSphere 
and some real-world examples of 
deployment. Let me summarize 
its pros and cons based on 
these real-world cases and the 
previous solution introduction to 
help you decide whether to adopt 
it based on your particular case.
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Pros
• Leverage your existing 

database capability

Instead of blowing up all your 
legacy database architecture, it’s 
a smooth and safe way to own a 
distributed database system.

• Migrate efficiently and 
steadily

With almost no downtime, 
ShardingSphere offers a 
migration process that allows 
you to move and shard your 
databases simultaneously.

• Traditional SQL-like approach 
to harness it

ShardingSphere’s DistSQL 
enables you to use the 
distributed database system’s 
features, such as sharding, data 
encryption, traffic governance, 
and so on, in a database native 
manner, i.e., SQL Flexible auto-
scaling feature for separate 
computing and storage power

You can scale-in or scale-out 
ShardingSphere-Proxy and 
Databases separately and flexibly 
depending on your needs, thanks 
to a non-aggressive computing-
storage splitting architecture.

• More cloud-native running 
and governance way

ShardingSphere-Proxy is much 
easier to manage and natively 
deploy on Kubernetes because it 
is essentially a type of stateless 
global computing server that also 
acts as a database server.

• Multi-cloud or cross-cloud

As stateful storage nodes, 
databases can reside on 
Kubernetes or on any cloud to 
avoid a single cloud platform 
lock-in. With ShardingSphere to 
connect your nodes, you will get 
a distributed database system.

• More necessary features 
around databases

ShardingSphere is a database 
ecosystem that provides data 
encryption, authentication, read/
write splitting, SQL auditing, 
and other useful features. 
Users gradually discover their 
advantages, regardless of 
sharding.

• More clients for you to 
choose from, or a hybrid one

ShardingSphere offers 
two clients based on user 
requirements: ShardingSphere-
Proxy and ShardingSphere-JDBC. 
Generally, ShardingSphere-JDBC 
has better performance than 
ShardingSphere-Proxy, whereas 
ShardingSphere-Proxy supports 
all development languages 
and Database management 
capabilities. A hybrid architecture 
with ShardingSphere-JDBC and 
ShardingSphere-Proxy is also 
a good way to reconcile their 
capabilities.

• Open-source support

Apache ShardingSphere is one of 
the Apache Foundation’s Top-
Level projects. It has been open-
sourced for over 5 years. As a 
mature community, it is a high-
quality project with many user 
cases, detailed documentation, 
and strong community support.

Cons
• Distributed transactions

Even in a distributed database 
system, the transaction is 
critical. However, because 
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this tech architecture was not 
developed from the storage 
layer, it currently relies on the 
XA protocol to coordinate the 
transaction handling of various 
data sources. It is not, however, 
a perfect and comprehensive 
distributed transaction solution.

• SQL-compatibility issue

Some SQL queries work well in a 
storage node (database) but not 
in this new distributed system. 

This is a difficult issue to achieve 
100% support, but thanks to the 
open-source community, we’re 
getting close.

• Consistent global backup

Although ShardingSphere 
defines itself as a computing 
database server, many users 
prefer to think of it and their 
databases as a distributed 
database. As a result, people 
must think about obtaining a 
consistent global backup of this 
distributed database system. 
ShardingSphere is working on 
such a feature, but it is not yet 
supported (release 5.2.1). Users 
may require manual or RDS 
backups of these databases.

• Some overhead

Each request will be received 
by ShardingSphere, calculated, 
and forwarded to the storage 
nodes. It is unavoidable that 
the overhead for each query 
will increase. This mechanism 

happens in any distributed 
database compared to a 
monolithic one.

Hands-on
This section demonstrates 
how to use ShardingSphere 
and PostgreSQL RDS to build a 
distributed PostgreSQL database 
that will allow users to shard 
data across two PostgreSQL 
instances.

For this demonstration, 
ShardingSphere-Proxy runs on 
Kubernetes, and PostgreSQL RDS 
runs on AWS. The deployment 
architecture is depicted in the 
following figure.

This demo will include the 
following major sections:

• Deploy the ShardingSphere-
Proxy cluster and 
ShardingSphere-Operator.

• Create a distributed database 
and table using Distributed 
SQL.

• Test the Scaling and HA of 
the ShardingSphere-Proxy 
cluster (computing nodes).

Prepare database RDS
We need to create two 
PostgreSQL RDS instances on 
AWS or any other cloud. They will 
act as storage nodes.

Deploy ShardingSphere-Operator
1. Download the repo, and 

create a namespace 
named `sharding-test` on 
Kubernetes.
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git clone https://
github.com/apache/
shardingsphere-on-cloud
kubectl create ns 
sharding-test
cd charts/shardingsphere-
operator
helm dependency build
cd ../
helm install shardingsphere-
operator shardingsphere-
operator -n sharding-test
cd shardingsphere-
operator-cluster
vim values.yaml
helm dependency build
cd ..
helm install shardingsphere-
cluster shardingsphere-
operator-cluster -n 
sharding-test

2. Change `automaticScaling: 
true` and `proxy-frontend-
database-protocol-type: 
PostgreSQL` in values.yaml 
of `shardingsphere-operator-
cluster` and deploy it.

3. Following these operations, 
you will create a 
ShardingSphere-Proxy cluster 
containing 1 Proxy instance, 
2 Operator instances, and 1 
Proxy governance instance 
showing as follows.

Create a sharding table by using 
Distributed SQL
1. Login to ShardingSphere 

Proxy and add PostgreSQL 
instances to Proxy.

kubectl port-forward 
--namespace sharding-
test svc/shardingsphere-
cluster-shardingsphere-
operator-cluster 
3307:3307
psql --host 127.0.0.1 -U 
root -p 3307 -d postgres

kubectl port-forward 
--namespace sharding-
test svc/shardingsphere-
cluster-shardingsphere-
operator-cluster 
3307:3307
psql --host 127.0.0.1 -U 
root -p 3307 -d postgres

2. Execute DistSQL to create a 
sharding table `t_user` with 
MOD (user_id, 4), and show 
the actual tables of this logic 
table `t_user`.

3. Insert some test rows and do 
a query on ShardingSphere-
Proxy to get the merged final 
result.

4. Login to two PostgreSQL 
instances to get their local 
results.

This simple test will help you 
understand that ShardingSphere 
can help you manage and shard 
your databases. People don’t 
need to care about the separate 
data in different shards.

Test the Scaling and HA of the 
ShardingSphere-Proxy cluster 
(computing nodes)

If you discover that the TPS 
(transactions per second) or 
QPS (queries per second) of this 
new system are extremely high 
and users complain that it takes 
too long to open a webpage, it’s 
time to upgrade your database 
system’s computing power.

Compared to other 
distributed database 
systems, ShardingSphere-
Proxy is the simplest way to 

increase computing nodes. 
ShardingSphere-Operator can 
ensure ShardingSphere-Proxy 
availability and autoscale 
them based on CPU metrics. 
Furthermore, by modifying its 
specifications, it is possible to 
make it scale-in or scale-out, just 
as follows:

You will receive two 
ShardingSphere-Proxy instances 
after upgrading the release. 
This implies that you have more 
computing power.

If, as mentioned above, you 
require more storage capacity, 
you can take the following steps.

Launch additional PostgreSQL 
instances in the cloud or 
on-premises.

Add these new storage nodes to 
the ShardingSphere-Proxy.

Run distributed SQL to allow 
ShardingSphere to assist you 
with resharding.

Wrap-up
The focus of this article is a new 
sharding database architecture 
on Kubernetes that leverages 
your existing monolithic 
databases, allowing the DevOps 
team to evolve their database 
infrastructure to a modern one 
efficiently and fluently.

The database computing-storage 
split is a vintage architecture 
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that is re-interpreted and fully 
leveraged on Kubernetes today 
to help users address the 
governance issue of the stateful 
database on Kubernetes.

These days, distributed 
databases, cloud computing, 
open source, big data, and 
modern digital transformation 
are common buzzwords. But they 
represent useful new concepts, 
ideas, and solutions that address 
production concerns and needs. 
As I always recommend to 
our end-users, look forward to 
welcoming new ideas, learning 
their pros and cons, and then 
choosing the best one for your 
specific situation, as there is no 
such thing as a perfect solution.
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Design Pattern Proposal for Autoscaling 
Stateful Systems
by Rogerio Robetti, Software Engineer

Considering the trend in software 
engineering for segregation 
and the ever-growing need for 
scalability, a common challenge 
arose where autoscaling stateful 
systems (databases being most 
common) became complex and, 
at times, unfeasible. That has led 
to many companies choosing to 
over-provision such systems so 
that, based on expected loads, 
the systems can cope with the 
highest expected demands. 

This, of course, brings problems 
as over-provisioning resources 
is costly. It does not guarantee 
reliability, as sudden surges of 
demand or a DOS attack can 

easily compromise the expected 
loads. This article aims to dig 
deeper into the challenges faced 
when attempting to auto-scale 
stateful systems and proposes 
an opinionated design solution 
on how to address many of those 
challenges through a mix of 
existing and novel approaches. 

Recapitulating a Little
If we look at how software 
engineering evolved historically, 
we see a few significant 
milestones in terms of building 
software and the restrictions and 
expectations of users. 

Suppose we took a concise, 
historical tour of software 
engineering. We would start 
with the mainframes and their 
centralized approach with 
large servers, pass by the 
desktop applications, including 
the Client-Server advent. We 
would then move into the web 
applications revolution and 
the multiple phases within it, 
from large monoliths to modern 
microservices. 

In all that history, we would see 
clear trends for segregation. 
Vertical segregation is where we 
divide systems by concerns (or 
context), generally having the 

https://www.infoq.com/articles/kafka-clusters-cloudflare/
https://en.wikipedia.org/wiki/Mainframe_computer
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Microservices
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database(s) separated from our 
applications and in many cases 
having our UI separated from our 
business or service layer. And 
there is horizontal segregation, 
where the systems can be scaled 
out by provisioning more nodes 
to support rising demands, even 
automatically, with the help of 
tools like an orchestrator such as 
Kubernetes.

This segregation hunger led to 
the inception of architectural 
approaches like the shared-
nothing architecture in which an 
application is built to not hold 
state in itself, becoming what we 
know as a stateless application 
and making it a lot simpler to 
scale out. That sounds like an 
awesome solution, but soon, 
engineers realized that there 
is seldom a “truly stateless” 
application—one that doesn’t 
hold state at all. 

What happens instead is that 
parts of the application (usually 
the services or microservices) are 
built stateless. However, they still 
rely on stateful systems such as 
databases to hold state on their 
behalf. This is the central theme 
of this article. I will discuss this 
common challenge in software 
engineering, how to efficiently 
auto-scale stateful systems in 
modern applications?

Targeted Use Cases
This article does not target 
stateful systems that hold state 
in web servers.

It provides a foundational 
design upon which software 
engineers can potentially build 
their own databases, explicitly 
addressing the concerns of 
getting a storage system that 
works in a single node and 
turning it into a distributed 
system with opinionated 
autoscaling capabilities. For 
example: Imagine a microservice 
architecture for online ordering, 
like the diagram in Figure 1.

Let’s say there are requirements 
that lead to the conclusion 
that using RocksDB as a key 
value storage engine for your 
project requirements is better 
than Redis. The trouble is that 
RocksDB is only a storage 
engine—it can only be deployed 
in one node as is. Let’s assume 
your requirements are for a new 
system that will have a global 
outreach and require significant 
extensibility. This article is a 
good start on how you can go 
about transforming a single-node 
storage engine like RocksDB into 
a distributed and auto-scalable 
application.

Note that RocksDB is just an 
example here. It could be any 
other storage engine or tool 
like Apache Lucene for text 
indexation or just in-memory 
storage without any engine, for 
that matter. This design pattern 
is generic and can apply to any 
storage engine, language, and 
data type and structure. Also, 
the designs shared here could 
be used to give autoscaling 
capabilities to any of the 

databases listed (Mongo, Redis, 
Postgres).

Stateful System Definition
A stateful system is a system 
where state must be handled. In 
modern web applications, the job 
of holding and managing state 
is typically done by a database, 
but it can also be a web server, 
for instance, when user sessions 
are stored in the web server’s 
memory.

In websites, a typical example 
of state to be managed is a 
user’s shopping cart (see Figure 
1). The cart has to be saved 
between HTTP requests so that 

Figure 1: Online shopping example use case

https://kubernetes.io/docs/concepts/overview/
https://en.wikipedia.org/wiki/Shared-nothing_architecture
https://en.wikipedia.org/wiki/Shared-nothing_architecture
http://rocksdb.org/
https://lucene.apache.org/
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when the user finishes shopping 
and proceeds to checkout and 
payment, the cart is in the correct 
state with the right products and 
amounts. The cart information 
has to be stored somewhere, 
and that somewhere is a stateful 
system. In our use case example 
in Figure 1, the Mongo DB cluster, 
Redis cluster, and Postgres 
cluster are the stateful systems.

Autoscaling—The Problems
When we start thinking about 
autoscaling stateful systems, 
the main concerns that come to 
mind are “When should we scale? 
What should be the trigger? How 
should this scale take place? 
How will we move the data? 
How will the nodes achieve 
consensus?”

Here are the main problems I will 
cover in this article:

Consensus
Every distributed system that 
holds state has to agree on the 
next valid state of the cluster. 
This is a well-researched area 
that we can refer to, we can 
take as examples Ark, Raft, and 
BDR, which are the consensus 
algorithms used by MongoDB, 
Redis, and Postgres, respectively. 
These are the databases picked 
for our example of online 
ordering presented before in 
Figure 1.

The need for consensus arises in 
software applications every time 
a cluster must agree on the next 
value of a record stored, being 

the most notorious use cases 
of database implementations. 
In this article, I will propose 
something new to make Raft 
consensus smarter when 
selecting a new leader. 

Autoscaling
In stateful systems, even though 
there is an increase in the 
offerings of systems that can 
auto-scale (managed instances 
of databases in cloud providers, 
for example), in practice, we see 
a struggle within companies 
to be able to implement such 
scenarios, which appear to be 
caused by:

• Lack of transparency: When 
we look at mainstream cloud 
providers like AWS and Azure 
it is easy enough to configure 
autoscaling, but it is not 
disclosed how exactly the 
autoscaling will happen, and 
knowing exactly how it works 
is vital for critical scenarios 
with large datasets—
questions like “When is the 
data moved? What is the 
strategy?” These should be 
clearly stated on the product 
offerings.

• Inexistence of public patterns 
to autoscaling: no publicly 
available patterns currently 
exist on how to auto-scale 
stateful systems.

Data migration lag
A common way of scaling a 
system is adding new nodes to 
the cluster. However, when we 
talk about stateful clusters, time 

is needed to achieve synchrony 
with all the data already held by 
the other nodes—in some cases, 
these amounts can be massive. 

Let’s take our online shopping 
example (Figure 1). If we talk 
about large organizations that 
operate in many geographical 
areas, the number of records 
can reach billions. At this scale, 
a clear and efficient approach to 
synchronizing and moving data 
is paramount.

Fast vs. slow demand increase
There are two instances where 
more capacity is required:

1. A steady, medium- to long-
term gradual increase in 
demand. In our ordering 
example, this would be the 
numbers of consumers 
growing consistently over a 
period of time.

2. A sudden surge in demand 
that may not be predictable 
and may risk the service 
becoming unavailable, which 
happens when the system 
is under a DoS attack, for 
instance.

Closed solutions 
There needs to be more publicly 
available design patterns for the 
listed problems above. It is not a 
good idea to simply believe that 
the cloud provider’s approach will 
work; even if it does, you may find 
yourself locked to that particular 
provider, which is not ideal.

https://www.infoq.com/news/2014/08/ark-mongodb/
https://github.com/RedisLabs/redisraft
https://www.enterprisedb.com/docs/pgd/latest/bdr/
https://www.mongodb.com/home
https://redis.io/
https://www.postgresql.org/
https://aws.amazon.com/
https://azure.microsoft.com/en-us/
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The Vision
My vision is a public proposal for 
a generic, replicable, opinionated 
approach for autoscaling stateful 
systems aiming to automatically 
scale up (vertical) and scale out 
(horizontal) from a single node 
up to hundreds or thousands of 
nodes in a single cluster with 
minimum configuration and 
interference of the operator. The 
solutions presented in this article 
are theoretical at this stage and 
require implementation and 
testing.

Core Principles
Data-type agnostic
The designs are not bound 
to any specific data types; in 
other words, you can use the 
same solutions to handle JSON 
objects, serialized data, streams, 
blobs, or other types of data. 

The Writer writes and the Reader 
reads!
The cluster leader responsible 
for writing new states only does 
the write operations—it does not 
perform reads. Read replicas, on 
the other hand, do all the read 
operations and never do writes.

Proxy as part of the cluster
You must have a proxy 
implementation that does not 
serve reads nor writes as part 
of the stateful cluster; this 
enables the cluster to use this 
proxy as a node that also slowly 
synchronizes the data of the 
cluster, eventually becoming 
ready to serve read or write 
requests if required.

Trigger autoscaling by average 
response time
Most autoscaling approaches 
used by cloud providers use CPU 
and memory thresholds, but that 
is not the best way to deliver 
the best client experience. Even 
though the resources may be 
under stress at certain times, 
it does not necessarily mean 
that the user is feeling it on the 
other end; the system may be 
using 99% of CPU and delivering 
requests in good time.

Using average response time 
as the primary trigger changes 
the decision-making on when 
to scale, taking the client’s 
perspective of the system’s 
performance.

A priory sharding labeling
Labeling each object/record 
stored with a shard ID avoids 
the costs of doing it when the 
pressure is higher on the system 
so that whenever you need to 
start sharding, the labels are 
already set, and no intervention is 
required.

Here we go… The designs
In this proposal for autoscaling 
stateful systems, there are three 
different actors. Each actor will 
have specific responsibilities in 
the cluster. It is worth pointing 
out that each actor proposed 
does not necessarily need to 
be running in its own process 
or node, and that has much to 
do with the ability to run the 
system in a single node, which 
raises concerns for production 

purposes. Still, it is paramount 
for testing, POC, or even some 
MVP setups.

Without further ado, let’s 
look at each actor and its 
responsibilities.

Writer (Leader)
The Writer (or leader) is the actor 
responsible for taking care of the 
write operations. It writes the 
new state in its own storage and 
is responsible for replicating the 
data to the Read Replica actor(s). 
There is only one Writer per shard 
(I will elaborate more on sharding 
later).

The Writer is the leader of a 
consensus, and all the write 
operations are executed through 
it. No read operations are 
executed through the Writer.

Read Replica
The Read Replica is the actor 
that serves all the read requests. 
It contains a replica of the data 
from the Writer (leader), except 
when both Writer and Reader are 
running in a single node/process, 
in which case they can share the 
same storage.

When the consensus protocol 
elects a new leader, each Read 
Replica is responsible for 
opening a multiplex pipe of 
communication with the leader 
that remains open until one of 
the nodes dies or the connection 
is broken by a network partition. 
This is important to speed up 
communication between the 
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actors/nodes by avoiding the 
overhead of opening and closing 
connections.

Load Manager
The Load Manager actor serves 
as a gateway and load balancer, 
sending write requests to the 
leader and read requests to 
the replicas. It is also a back 
pressure mechanism that can 
accept thousands of inbound 
connections. Still, it maintains 
the number of parallel threads 
against the target (Read 
Replica or Writer) limited to a 
configurable number, therefore 
keeping the pressure on these 
actors controlled. The Apache 
Tomcat Nio Connector inspires 
this. And it is vital to defend the 
cluster against sudden increases 
in loads or DOS attacks, in 
which case the pressure will be 
absorbed by the Load Manager, 
keeping the read and write actors 
safe and receiving a steady flow 
of requests.

The Load Manager is also 
responsible for routing write 
requests to the correct shard 
and sending query requests to 
each shard when aggregation is 
required. It also aggregates and 
sorts the results before returning 
them to the client, reducing the 
amount of work required from the 
Read Replica. The Load Manager 
addresses these concerns in 
the same manner as a database 
proxy would, with the difference 
that it is part of the cluster and 
not an external added component 
in this case.

There can be more than one 
instance of the Load Manager. 
Every time the Load Manager 
instance(s) reach a configurable 
threshold of CPU and/or 
memory, a new Load Manager is 
provisioned, generating a cluster 
of Load Managers that should 
have their own independent 
consensus mechanism.

High-Level Design 
The basic interaction between 
the actors proposed in this 
design pattern is expressed in 
the diagram presented in Figure 
2:

Why Raft?
Raft is a well-known and battle-
tested consensus algorithm 
sometimes comparable to Paxos 
in performance but a lot simpler, 
as explained in this Paper review: 
Raft vs. Paxos. 

The fact that Raft only has one 
leader at a given time is very 
important for the strategies I will 
describe here.

Smart Raft 
I propose modifying the Raft 
protocol to increase the overall 
performance of the cluster by 
making Raft aware of node 
differences and selecting the 
“bigger” node available as 
a leader. This is especially 
important when talking about 
autoscaling write operations, 
as we only have one leader at a 
given time. The most obvious 
way to increase its capabilities is 
to provision a “bigger” leader and 
therefore trigger a new election. 
Raft then needs to be able to 
identify and elect the new 

“bigger” node as leader. 

An alternative approach is to 
modify Raft to be able to receive 
a “switch to” instruction which 
would cause the cluster to 
switch the leader to the specified 
“bigger” node. 

The latter approach is preferred, 
as it would be a smaller change 
to protocol and would decouple 
the task of switching the leader 
from the switch logic. 

Figure 2: Basic design of the proposed solution

https://whatismyipaddress.com/gateway
https://en.wikipedia.org/wiki/Load_balancing_(computing)
https://medium.com/@jayphelps/backpressure-explained-the-flow-of-data-through-software-2350b3e77ce7
https://medium.com/@jayphelps/backpressure-explained-the-flow-of-data-through-software-2350b3e77ce7
https://dzone.com/articles/understanding-tomcat-nio
https://dzone.com/articles/understanding-tomcat-nio
https://www.programmingbrain.com/2022/11/what-is-database-proxy.html
https://www.programmingbrain.com/2022/11/what-is-database-proxy.html
https://raft.github.io/
https://martinfowler.com/articles/patterns-of-distributed-systems/paxos.html
https://emptysqua.re/blog/paxos-vs-raft/
https://emptysqua.re/blog/paxos-vs-raft/
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Bigger in this context is related 
to CPU, memory, storage 
technology (SSD), or other 
resources—it all depends on the 
purpose of the stateful cluster. If 
the cluster is intended to serve 
complex calculations, bigger 
probably means more CPU, but if 
it serves requests, it might mean 
more memory and better storage 
technology. 

Autoscaling Strategy
The phases of scalability that I 
explain next are named Mach* 
in an allusion to the speed term 
used to describe objects as 
fast or faster than the speed of 
sound. In this article, each Mach 
stage effectively implies the 
cluster’s number of nodes.

*Mach terminology is only 
used in this article—it is not an 
industry naming convention.

Configurable Scaling Triggers
It is important to understand 
when is the right time to auto-
scale/auto-descale. For instance, 
it is a bad idea to attempt to 
scale when the system is under 
a lot of pressure, and that is why 
the back pressure offered by 
the Load Manager actor is so 
significant. 

I will focus on scenarios where 
the increase in demand happens 
gradually over time. For that, 
there are two essential types of 
configurations that can be used 
to trigger autoscaling.

In both scenarios, it is the 
responsibility of the Load 
Manager to recognize that a 
trigger should happen and emit 
a notification to the operator. 
(Note: the operator may be a 
human or a software system, 
preferably the latter.)

The configurable triggers are:

1. By average response time 
threshold
One of the jobs of the Load 
Manager is to monitor the 
average response time of 
requests. When the average 
response time of requests 
reaches a threshold, a trigger for 
scale is issued. 

Example of scaling UP 
configuration: 3 seconds/request 
on average in the last 60 min.

Example of scaling DOWN 
configuration: < 0.5 seconds/
request on average in the last 60 
min.

2. By timeout threshold
The timeout threshold is a 
percentage of requests that may 
time out within a given period of 
time before an auto-scale signal 
is issued.

Example of scaling UP 
configuration: > 1% of requests 
timed out in the last 5 min.

Example of scaling DOWN 
configuration: Not recommended 
for timeout threshold as no 
level of timeouts is advisable to 

be safe for a downgrade in the 
cluster.

Refer back to Figure 1, and 
assume that we have replaced 
Redis with our auto-scalable 
RocksDB. The new RocksDB 
auto-scalable cluster would 
scale up and down based on 
these thresholds being breached 
without any interference of the 
human operator/admin.

Notes before continuing reading:

• The following examples for 
each Mach stage focus on 
increasing read capabilities, 
which will indirectly increase 
write capabilities as per 
the following workload 
segregation. To scale 
targeted write capacity, 
a special section will be 
dedicated after Mach IV.

• A “Node” in this text means 
a participant in the cluster 
and an individual process 
running—it does not 
necessarily indicate different 
hardware.

• The total number of replicas 
to be provisioned before 
starting to create shards has 
to be configurable.

• The cluster can start in 
any desired setup, being 
Mach IV the minimum setup 
recommended for production 
purposes.

• All three actors’ (Writer, Read 
Replica, and Load Manager) 
implementations are modular 

https://en.wikipedia.org/wiki/Solid-state_drive
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and always deployed in 
the nodes. When a node is 
labeled as Writer, for example, 
it means that only the Writer 
module is enabled on it, but 
it still contains the disabled 
modules of Read Replica 
and Load Manager, which is 
what allows nodes to switch 
responsibilities if needed.

Mach I
This is the initial state of the 
system/cluster; all its actors 
are active in a single node, it is 
indicated for small use cases or 
testing pipeline scenarios, and it 
looks like the diagram in Figure 3.

In Mach I, all components are 
deployed as a single process in a 
single node. This single node is 
responsible for managing all the 
read and write requests.

Use case: Mostly recommended 
for testing scenarios—not ideal 
for production.

Consensus and replication
At Mach I, no consensus or 
replication is required as the 
components communicate in 
memory module to the module.

Mach II
In Mach II, the cluster counts with 
two nodes deployed—the second 
node on a scale out is always a 
Load Manager. That is to ensure 
back pressure protection on the 
node responding to the requests 
and to allow the new node to 
gradually synchronize the data.

Figure 3: Single node deployment—Mach I.

Figure 4: Two-node deployment—Mach II.

Figure 5: Three-node deployment—Mach III.

Figure 6: Four-node deployment—Mach IV.



31

The InfoQ
 eM

ag / Issue #109/ June 2023

The topology is represented in 
the diagram in Figure 4.

Consensus and replication
At Mach II, consensus is not 
required as it is impossible to 
establish Raft consensus with 
less than three nodes.

Replication will happen from the 
Read Replica module deployed 
on node two to the Read Replica 
module that also runs in Node 
2 alongside the Load Manager. 
The point to be noted is that 
the Read Replica in Node 2 
(the Load Manager node) does 
not serve requests; this design 
decision is to always have a node 
“nearly” synchronized, which can 
enter in operation as an extra 
Read Replica or a leader node 
extremely fast, as I will explain in 
Mach III.

Use case: Can be used in 
scenarios where reliability is not 
so important and low operational 
costs are.

Mach III
Mach III indicates that an extra 
node has been added to the 
cluster, which now has three 
nodes in total.

The new node will always 
enter the cluster as a new 
Load Manager, the clients will 
be redirected to the new Load 
Manager, and the Load Manager 
provisioned in Mach II takes the 
role of a Read Replica.

The diagram in Figure 5 
represents the Mach III scenario.

Consensus and replication
No consensus is required yet 
because besides having three 
nodes, only Node 1 and 2 can 
actively serve requests.

Use case: Already offers a good 
performance by separating read 
and write operations in different 
nodes. However, if a node fails 
due to the lack of a second Read 
Replica node, this would force 
the Writer to start serving read 
requests until a new node is 
provisioned.

Resiliency strategy
Leader crashes: The cluster 
returns to Mach II topology with 
Node 2 assuming the write and 
read operations until a new node 
is added to the cluster.

Node 2 (Read Replica) goes 
down: The Leader/Writer starts 
serving read requests until a new 
node is added back to the cluster.

Node 3 (Load Manager) goes 
down: Node 2 will start operating 
as Load Manager and no longer 
as Read Replica, and Node 1 
will perform the write and read 
operations.

In all three scenarios, a signal is 
sent to the operator requesting 
the provisioning of a new node 
to replace the fallen one, and 
the new node always enters the 
cluster as a Load Manager.

Mach IV
At this stage, there are four 
nodes in the cluster, and there 
is a second Read Replica. The 
deployment will look like the 
diagram in Figure 6:

Use case: Minimum setup 
indicated for production 
workloads, good performance, 
and good response in case of a 
failing node.

Consensus and replication
At Mach IV, consensus is 
introduced, but no election is 
held initially. Node 1 will remain 
as leader and centralize the write 
operations not to waste time 
switching to a new leader. It is 
vital that the Raft implementation 
is extended to support this 
arrangement. It is also crucial 
that if the leader goes down, 
Node 2 or 3 becomes the new 
leader, reverting to Mach III 
topology. The Load Manager is 
responsible for making such a 
decision.

Leader crashes: Raft protocol 
can’t have an election with only 
two nodes remaining in the 
cluster, so the Load Manager 
will randomly pick a new leader 
between Nodes 2 and 3 that 
contain a Read Replica running.

From Mach IV, the resiliency 
strategy for Replicas and Load 
Manager nodes is the same as 
Mach III, and new replica nodes 
can be added to the cluster to a 
configurable max number before 
shards are created.
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Mach V, VI, and so on…
New Read Replicas keep being 
added to the cluster until a 
configured max number where 
sharding starts to take place. 
Note that adding Replicas means 
always adding a new Load 
Manager and taking the place 
of the previous Load Manager. 
The previous Load Manager then 
joins the Raft consensus and 
starts serving read requests.

Use case: As the cluster grows 
larger, it becomes more reliable 
since the failure of one node is 
not as dramatic as in smaller 
setups.

Resiliency strategy
Leader crashes: Raft elects a 
new leader among the Read 
Replicas available, and the new 
leader communicates to the Load 
Manager of its election.

Read Replica crashes: A new 
node is requested to be added to 
the cluster.

Load Manager crashes: The 
latest Read Replica added to 
the cluster assumes the Load 
Manager responsibilities, no 
longer serving read requests 
itself until a new node is 
provisioned, and as always, it 
enters the cluster as a Load 
Manager.

Read Intensive vs. Write 
Intensive Scenarios 
Until Mach IV, the autoscaling 
neglects the characteristics 
of the load to the detriment of 

having what is considered the 
minimum replication setup for 
a reliable system. The system 
will continue to auto-scale, 
but now differently. It will now 
consider if the usual load is Read 
Intensive (80% or more reads), 
Write Intensive (80% or more 
write operations), or balanced 
(all other scenarios). This may 
not account for exceptional use 
cases but remember that this is 
an opinionated pattern and that, 
if necessary, it can be adapted 
for special circumstances. The 
target here is to address most of 
the use cases—not all.

Scaling Read Intensive scenarios
This requires the simplest 
strategy where new nodes keep 
being added in the same manner 
as Mach I to Mach VII, which 
represents seven nodes (1 Read 
Manager, 1 Leader Writer, and 5 
Read Replicas) where the cluster 
will then start using shard labels 
(more on it soon) to create 
shards of the existing data and 
divide the load of incoming 

requests between the newly 
created shards.

Before it operates in two shards, 
a new node is added to the 
cluster to support the topology 
introduced in Figure 7, with a 
minimum of eight nodes.

Use case: Large-scale scenarios 
with ever-growing demands.

The diagram in Figure 7 
represents a setup with two 
shards, each shard containing 
one leader and two Read 
Replicas, plus an extra replica in 
a Load Manager node.

This can be further scaled into 
a third or fourth shard when 
enough nodes are provisioned in 
each shard. For example, if Shard 
2 scales to seven nodes, the next 
step is to add a new node and 
divide it into two shards.

Each Load Manager holds a 
replica of only one shard, and 
that is the shard the Load 

Figure 7: Sharding topology example for two shards.
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Manager can assume the read 
or writer role if needed, but to 
be able to fulfill requests from 
clients, it needs to write and read 
from all shards.

Scaling Write Intensive scenarios
For the scenarios where write 
operations are the focus or where 
sensible degradation is observed 
on write operations, there are 
two ways to scale the writing 
capacity of the cluster:

1. Provision of a bigger leader

The first approach is to provision 
a bigger node (memory, and/
or CPU, and/or read/write 
storage speed) than the current 
leader. This node will initially 
be provisioned as the Load 
Manager (as always) and will 
remain as Lead Manager until 
it synchronizes with the current 
leader exactly like in the Mach 
transitions explained earlier. 
Once synchronized, it starts 
a new election and becomes 
the new leader of the Raft 
consensus, switching places with 
the old leader. Each node in the 
cluster has specification levels 
labeled from 1 to 5, where 1 is 
the lowest level of specification 
(smaller resources), and 5 is the 
highest (bigger resources).

2. Sharding 

Once scaling vertically has 
reached its limit (node level 5), 
sharding begins. A new leader 
will be provisioned as Read 
Replica that will first synchronize 

only the shard it will take over 
from the current leader and then 
will become the leader itself only 
for that shard of the data. The 
level of the new node added (1 to 
5) has to be configurable.

This is a different trigger for 
sharding than the Read Intensive 
scenario described before. Read 
Intensive sharding is triggered 
based on horizontal scale 
(number of nodes). For Write 
Intensive scenarios, sharding is 
triggered based on vertical scale; 
in other words, the size of the 
leader reached the maximum 
possible (5).

It is also possible to specify 
that when the new shard is 
provisioned, both leaders are of 
a certain level, for instance, level 
3. This is important because two 
level 3s make a “level 6” Writer 
capable cluster, but this should 
also be configurable. In this 
scenario, the previous level 5 
Writer node would be replaced by 
two level 3 nodes, one for each 
shard.

A priority labeling for sharding 
strategy
The problem: Figuring out how 
to separate information into 
shards efficiently is no easy task, 
especially if the data is large and 
complex.

A simple solution: Every time 
a record/object is stored in the 
cluster, a bucket ID in a range 
from 1 to 1000 is assigned to it. 
This bucket ID is random and 

guarantees that, at a large scale, 
each bucket will have a similar 
number of objects assigned to it, 
balancing the shards.

For instance, for two shards, 
the first shard will have objects 
allocated in the buckets from 
1 to 500 inclusive, and the 
second shard will have objects 
allocated in the buckets 501 to 
1000 inclusive, considering that 
the total number of buckets was 
defined to be 1000. 

This splitting buckets per shard 
process will be repeated every 
time a new shard is required. This 
means that, for this example, 
the maximum number of shards 
is 1000, which is probably 
unrealistically high for most 
scenarios.

Conclusion and Future Work
By no means do I believe 
this article addresses all the 
nuances of autoscaling a stateful 
system but instead offers a 
template and a pattern based 
on many techniques I have used 
separately during my career, now 
put into a single standard that 
can be used as a foundation for 
stateful autonomous scalability 
implementations. These designs 
may not be the best fit for 
scenarios where the majority 
of the read operations have to 
be executed against many or 
all shards. In such scenarios, a 
better shard bucket definition is 
advisable to attempt to have all 
the data needed in a single shard 
or in as few shards as possible. 

https://www.geeksforgeeks.org/what-is-sharding/
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DynamoDB Data Transformation Safety: from 
Manual Toil to Automated and Open Source
by Guy Braunstain, Full Stack Developer

When designing a product to be 
a self-serve developer tool, there 
are often constraints - but likely 
one of the most common ones is 
scale. Ensuring our product, Jit - 
a security-as-code SaaS 
platform, was built for scale was 
not something we could embed 
as an afterthought, it needed to 
be designed and handled from 
the very first line of code.

We wanted to focus on 
developing our application and 
its user experience, without 
having challenges with issues 
and scale be a constant 
struggle for our engineers. After 
researching the infrastructure 
that would enable this for 

our team - we decided to 
use AWS with a serverless-based 
architecture.  

AWS Lambda is becoming an 
ever-popular choice for fast-
growing SaaS systems, as it 
provides a lot of benefits for 
scale and performance out of 
the box through its suite of 
tools, and namely the database 
that supports these systems, 
AWS’s DynamoDB.

One of its key benefits is 
that it is already part of 
the AWS ecosystem, and 
therefore this abstracts many 
of the operational tasks of 
management and maintenance, 

such as maintaining connections 
with the database, and it requires 
minimal setup to get started in 
AWS environments.

As a fast-growing SaaS 
operation, we need to evolve 
quickly based on user and 
customer feedback and embed 
this within our product. Many 
of these changes in application 
design have a direct impact on 
data structures and schemas.

With rapid and oftentimes 
significant changes in the 
application design and 
architecture, we found 
ourselves needing to make data 
transformations in DynamoDB 

https://www.infoq.com/articles/dynamoDB-data-transformation-safety/
https://www.jit.io/
https://aws.amazon.com/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
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very often, and of course, with 
existing users, it was a priority 
that this be achieved with zero 
downtime. (In the context of this 
article Data Transformation will 
refer to modifying data from state 
A to state B).

Challenges with Data 
Transformation
In the spirit of Brendon Moreno 
from the UFC:

Maybe not today, maybe not 
tomorrow, and maybe not next 
month, but only one thing is 
true, you will need to make 
data transformations one day, I 
promise.

Yet, while data transformation is 
a known constant in engineering 
and data engineering, it remains 
a pain point and challenge to 
do seamlessly. Currently, in 
DynamoDB, there is no easy 
way to do it programmatically 
in a managed way, surprisingly 
enough.

While there are many forms 
of data transformation, from 
replacing an existing item’s 
primary key to adding/removing 
attributes, updating existing 
indexes - and the list goes 
on (these types are just a few 
examples), there remains no 
simple way to perform any 
of these in a managed and 
reproducible manner, without 
just using breakable or one-off 
scripting.

User Table Data Transform 
Example

Below, we are going to dive into 
a real-world example of a data 
transformation process with 
production data.

Let’s take the example of 
splitting a “full name” field into 
its components “first name” 
and “last name”. As you can see 
in the example below, the data 
aggregation currently writes 
names in the table with a “full 
name” attribute. But let’s say 
we want to transform from a full 
name, and split this field into first 
and last name fields.

Looks easy, right?  Not so, to 
achieve just this simple change 
these are the steps that will 
need to be performed on the 
business logic side, in order to 
successfully transform this data.

• Scanning the user records

• Extracting the FullName 
attribute from each record

• Splitting the FullName 
attribute into new FirstName 
and LastName attributes

• Saving the new records 

• Cleaning up the FullName 
attribute

But let’s discuss some of the 
issues you would need to take 
into account before you even 
get started, such as - how do 
you run and manage these 
transformations in different 
application environments? 
Particularly when it’s not really 
considered a security best 
practice to have access to each 
environment.  In addition, you 
need to think about service 
dependencies.  For example, 
what should you do when you 
have another service dependent 
on this specific data format? 

Your service needs to be 
backward compatible and still 
provide the same interface to 
external services relying on it.

When you have production 
clients, possibly one of the most 
critical questions you need to 
ask yourself before you modify 
one line of code is how do you 
ensure that zero downtime will be 
maintained?

Some of the things you’d need to 
plan for to avoid any downtime 
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is around testing and verification. How do you even 
test your data transformation script? What are 
some good practices for running a reliable dry run 
of a data transformation on production data?

There are so many things to consider before 
transforming data.

Now think that this is usually, for the most part, 
done manually.  What an error-prone, tedious 
process! It looks like we need a fine-grained 
process that will prevent mistakes and help us to 
manage all of these steps.

To avoid this, we understood we’d need to define a 
process that would help us tackle the challenges 
above.

The Rewrite Process

Figure 1: Rewrite Process Flow Chart

First, we started by adjusting the backend code to 
write the new data format to the database while 
still keeping the old format, by first writing the 
FullName, FirstName and LastName to provide us 
some reassurance of backward compatibility. This 
would enable us to have the ability to revert to the 
previous format if something goes terribly wrong.

async function createUser(item) {
   // FullName = ‘Guy Br’
   // ‘Guy Br’.split(‘ ‘) === [‘Guy’, 
‘Br’]
   // Just for the example assume that 
the FullName has one space between first 
and last name
   const [FirstName, LastName] = item.
FullName.split(‘ ‘);

   const newItemFormat = { ...item, 
FirstName, LastName };
   return dynamodbClient.put({
       TableName: ‘Users’,
       Item: newItemFormat,
   }).promise();
};

Link to GitHub

Next, we wrote a data transformation script that 
scans the old records and appends the FirstName 
and LastName attributes to each of them, see the 
example below:

async function 
appendFirstAndLastNameTransformation() 
{
  let lastEvalKey;
  let scannedAllItems = false;

  while (!scannedAllItems) {
    const { Items, LastEvaluatedKey } = 
await dynamodbClient.scan({ TableName: 
‘Users’ }).promise();
    lastEvalKey = LastEvaluatedKey;

    const updatedItems = Items.
map((item) => {
      const [FirstName, LastName] = 
splitFullNameIntoFirstAndLast(item.
FullName);
      const newItemFormat = { ...item, 
FirstName, LastName };
      return newItemFormat;
    });

    await Promise.all(updatedItems.
map(async (item) => {
      return dynamodbClient.put({
        TableName: ‘Users’,
        Item: item,
      }).promise();
    }));

    scannedAllItems = !lastEvalKey;
  };
}

Link to GitHub

After writing the actual script (which is the easy 
part), we now needed to verify that it actually does 
what it’s supposed to. To do so, the next step 

http://gist.github.com/Guy7B/070701d73964987733a12cee422fc4da.js
https://gist.github.com/Guy7B/fe2154630dfce753ac28c0ddb8c185c1.js


37

The InfoQ
 eM

ag / Issue #109/ June 2023

was to run this script on a test environment and 
make sure it works as expected. Only after the 
scripts usability is confirmed, it could be run on the 
application environments.

The last phase is the cleanup, this includes taking 
the plunge and ultimately deleting the FullName 
column entirely from our database attributes. This 
is done in order to purge the old data format which 
is not used anymore, and reduce clutter and any 
future misuse of the data format.

async function cleanup() {
  let lastEvalKey;
  let scannedAllItems = false;

  while (!scannedAllItems) {
    const { Items, LastEvaluatedKey } = 
await dynamodbClient.scan({ TableName: 
‘Users’ }).promise();
    lastEvalKey = LastEvaluatedKey;

    const updatedItems = Items.
map((item) => {
      delete item.FullName;
      return item;
    });

    await Promise.all(updatedItems.
map(async (item) => {
      return dynamodbClient.put({
        TableName: ‘Users’,
        Item: item,
      }).promise();
    }));

    scannedAllItems = !lastEvalKey;
  };
 };

Link to GitHub

Lets quickly recap what we have done in the 
process:

• Adjusted the backend code to write in the new 
data format

• Created a data transformation script that 
updates each record

• Validated that script against a testing 
environment

• Ran the script on the application environments

• Cleaned up the old data

This well-defined process helped us to build 
much-needed safety and guardrails into our data 
transformation process. As we mentioned before, 
with this process we were able to avoid downtime 
by keeping the old format of the records until we 
don’t need them anymore. This provided us with a 
good basis and framework for more complex data 
transformations.

Transforming Existing Global Secondary Index 
(GSI) using an External Resource
Now that we have a process––let’s be honest, real-
world data transformations are hardly so simple.  
Let’s assume, a more likely scenario, that the data 
is actually ingested from an external resource, such 
as the GitHub API, and that our more advanced 
data transformation scenario actually requires us 
to ingest data from multiple sources.  

Let’s take a look at the example below for how this 
could work.

In the following table, the GSI partition key is by 
GithubUserId.

For the sake of this data transformation example, 
we want to add a “GithubUsername” column to our 
existing table.

https://gist.github.com/Guy7B/e56e170bba337f02e3dc91c3241c8430.js
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.github.com/en/developers/overview/about-githubs-apis
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This data transformation looks seemingly as 
straightforward as the example with the full name, 
but there is a little twist.

How can we get the Github username if we don’t 
have this information? We have to use an external 
resource, in this case, it’s the Github API.

GitHub has a simple API for extracting this data (you 
can read the documentation here). We will pass the 
GithubUserId and get information about the user which 
contains the Username field that we want.

https://api.github.com/user/:id

The naive flow is similar to the full name example 
above:

• Adjust our code to write in the new data format.

• Assume that we have the Github username 
when creating a user.

• Scan the user records (get `GithubUsername` 
by `GithubUserId` for each record using Github 
API), and update the record. 

• Run that script on the testing environment

• Run it on the application environments

However, in contrast to our previous flow, there 
is an issue with this naive flow. The flow above 
is not safe enough. What happens if you have 
issues while running the data transformation when 
calling the external resource? Perhaps the external 
resource will crash / be blocked by your IP or is 
simply unavailable for any other reason? In this 
case, you might end up with production errors or 
a partial transformation, or other issues with your 
production data.

What can we do on our end to make this process 
safer?

While you can always resume the script if an 
error occurs or try to handle errors in the script 

itself, however, it is important to have the ability 
to perform a dry run with the prepared data from 
the external resource before running the script on 
production. A good way to provide greater safety 
measures is by preparing the data in advance.

Below is the design of the safer flow:

Adjust our code to write in the new data format 
(create a user with GithubUsername field)

Create the preparation data for the transformation

Only after we do this, we scan the user records, get 
GithubUsername for each of them using Github 
API, append it to a JSON Object `{ [GithubUserId]: 
GithubUsername }` and then write that JSON to a 
file.

This is what such a flow would look like:

async function 
prepareGithubUsernamesData() {
  let lastEvalKey;
  let scannedAllItems = false;

  while (!scannedAllItems) {
    const { Items, LastEvaluatedKey } = 
await dynamodbClient.scan({ TableName: 
‘Users’ }).promise();
    lastEvalKey = LastEvaluatedKey;

    const currentIdNameMappings = await 
Promise.all(Items.map(async (item) => {
      const githubUserId = item.
GithubUserId;
      const response = await 
fetch(`https://api.github.com/
user/${githubUserId}`, { method: ‘GET’ 
});
      const githubUserResponseBody = 
await response.json();
      const GithubUsername = 
githubUserResponseBody.login;

      return { [item.GithubUserId]: 
GithubUsername };
    }));

    currentIdNameMappings.
forEach((mapping) => {

https://docs.github.com/en/developers/overview/about-githubs-apis
https://api.github.com/user/:id
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      // append the current mapping to 
the preparationData object
      preparationData = { 
...preparationData, ...mapping };
    });

    scannedAllItems = !lastEvalKey;
  };

  await fs.writeFile(‘preparation-
data.json’, JSON.
stringify(preparationData));
};

Link to GitHub

Next we scan the user records (get 
GithubUsername by GithubUserId for each record 
using Preparation Data), and move ahead to 
updating the record.

async function appendGithubUsername() {
  let lastEvalKey;
  let scannedAllItems = false;

  while (!scannedAllItems) {
    const { Items, LastEvaluatedKey } = 
await dynamodbClient.scan({ TableName: 
‘Users’ }).promise();
    lastEvalKey = LastEvaluatedKey;

    const updatedItems = Items.
map((item) => {
      const GithubUsername = 
preparationData[item.GithubUserId];
      const updatedItem = 
currentGithubLoginItem ? { ...item, 
GithubUsername } : item;
      return updatedItem;
    });

    await Promise.all(updatedItems.
map(async (item) => {
      return dynamodbClient.put({
        TableName: ‘Users’,
        Item: item,
      }).promise();
    }));

    scannedAllItems = !lastEvalKey;
  };
};

Link to GitHub

And finally, like the previous process, we wrap up by 
running the script on the testing environment, and 
then the application environments.

Dynamo Data Transform
Once we built a robust process that we could trust 
for data transformation, we understood that to do 
away with human toil and ultimately error, the best 
bet would be to automate it.

We realized that even if this works for us today at 
our smaller scale, manual processes will not grow 
with us. This isn’t a practical long-term solution 
and would eventually break as our organization 
scales. That is why we decided to build a tool that 
would help us automate and simplify this process 
so that data transformation would no longer be 
a scary and painful process in the growth and 
evolution of our product. 

Applying automation with open source tooling
Every data transformation is just a piece of code 
that helps us to perform a specific change in our 
database, but these scripts, eventually, must be 
found in your codebase.

This enables us to do a few important operations:

• Track the changes in the database and know 
the history at every moment. Which helps to 
investigate bugs and issues.

• No need to reinvent the wheel - reusing existing 
data transformation scripts already written your 
organization  streamlines processes.

By enabling automation for data transformation 
processes, you essentially make it possible for 
every developer to be a data transformer. While 
you likely should not give production access to 
every developer in your organization, applying 
changes is the last mile. When only a handful of 
people have access to production, this leaves them 
with validating the scripts and running them on 
production, and not having to do all of the heavy 
lifting of writing the scripts too. We understand 

https://gist.github.com/Guy7B/48306ad4acfb1e7136b039635013d25b.js
https://gist.github.com/Guy7B/15149835c7f4b18d368c69a1960ef6b1.js
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it consumes more time than needed for those 
operations and it is not safe. 

When the scripts in your codebase and their 
execution are automated via CI/CD pipelines

other developers can review them, and basically, 
anyone can perform data transformations on all 
environments, alleviating bottlenecks.

Now that we understand the importance of having 
the scripts managed in our codebase, we want 
to create the best experience for every data-
transforming developer.

Making every developer a data transformer
Every developer prefers to focus on their business 
logic - with very few context disruptions and 
changes. This tool can assist in keeping them 
focused on their business logic, and not have to 
start from scratch every time they need to perform 
data transformations to support their current tasks.  

For example - dynamo-data-transform provides 
the benefits of: 

• Export utility functions that are useful for most 
of the data transformations

• Managing the versioning of the data 
transformation scripts

• Supporting dry runs to easily test the data 
transformation scripts

• Rollback in the event the transformation goes 
wrong - it’s not possible to easily revert to the 
previous state

• Usage via CLI––for dev friendliness and to 
remain within developer workflows. You can 
run the scripts with simple commands like 
`dynamodt up`, `dynamodt down` for rollback, 
`dynamodt history` to show which commands 
were executed.

Dynamo Data Transform:
Quick Installation for serverless:

The package can be used as a standalone npm 
package see here.

To get started with DynamoDT, first run:

npm install dynamo-data-transform 
--save-dev

To install the package through NPM (you can also 
install it via…)

Next, add the tool to your serverless.yml Run:

npx sls plugin install -n dynamo-data-
transform

You also have the option of adding it manually to 
your serverless.yml:

plugins:
  - dynamo-data-transform

You can also run the command:

sls dynamodt --help

To see all of the capabilities that DynamoDT 
supports.

Let’s get started with running an example with 
DynamoDT. We’ll start by selecting an example 
from the code samples in the repo, for the sake of 
this example, we’re going to use the example `v3_
insert_users.js`, however, you are welcome to test it 
out using the examples you’ll find here.

We’ll initialize the data transformation folder with 
the relevant tables by running the command: 

npx sls dynamodt init --stage local

For serverless (it generates the folders using the 
resources section in the serverless.yml):

resources:

https://github.com/jitsecurity/dynamo-data-transform#standalone-npm-package
https://github.com/jitsecurity/dynamo-data-transform/tree/main/examples/serverless-localstack/data-transformations/UsersExample
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 Resources:
   UsersExampleTable:
     Type: AWS::DynamoDB::Table
     Properties:
       TableName: UsersExample

The section above should be in serverless.yml

The data-transformations folder generated with a 
template script that can be found here.

We will start by replacing the code in the template 
file v1_script-name.js with:

const { utils } = require(‘dynamo-data-
transform’);

const TABLE_NAME = ‘UsersExample’;

/**
 * The tool supply following 
parameters:
 * @param {DynamoDBDocumentClient} ddb 
- dynamo db document client https://
docs.aws.amazon.com/AWSJavaScriptSDK/
v3/latest/clients/client-dynamodb
 * @param {boolean} isDryRun - true if 
this is a dry run
 */
const transformUp = async ({ ddb, 
isDryRun }) => {
  const addFirstAndLastName = (item) => 
{
    // Just for the example:
    // Assume the FullName has one 
space between first and last name
    const [firstName, ...lastName] = 
item.name.split(‘ ‘);
    return {
      ...item,
      firstName,
      lastName: lastName.join(‘ ‘),
    };
  };
  return utils.transformItems(ddb, 
TABLE_NAME, addFirstAndLastName, 
isDryRun);
};

module.exports = {
  transformUp,
  transformationNumber: 1,
};

Link to GitHub

For most of the regular data transformations, you 
can use the util functions from the dynamo-data-
transform package. This means you don’t need to 
manage the versions of the data transformation 
scripts, the package will do this work for you. 
Once you’ve customized the data you’ll want to 
transform, you can test the script using the dry run 
option by running:

npx sls dynamodt up --stage local --dry

The dry run option prints the records in your 
console so you can immediately see the results of 
the script, and ensure there is no data breakage or 
any other issues.

Once you’re happy with the test results, you can 
remove the --dry flag and run it again, this time it 
will run the script on your production data, so make 
sure to validate the results and outcome.

Once you have created your data transformation 
files, the next logical thing you’d likely want to 
do is add this to your CI/CD.  To do so add the 
command to your workflow/ci file for production 
environments.

The command will run immediately after the `sls 
deploy` command, which is useful for serverless 
applications.

Finally, all of this is saved, as noted above so if you 
want to see the history of the data transformations, 
you can run:

https://github.com/jitsecurity/dynamo-data-transform#data-transformation-script-format
https://gist.github.com/Guy7B/495732ecc3c9915bf160de97940e2a28
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npx sls dynamodt history --table UserExample --stage 
local

The tool also provides an interactive CLI for those 
who prefer to do it this way.

And all of the commands above are supported via 
CLI as well.

With Dynamo Data Transform, you get the added 
benefits of being able to version and order your 
data transformation operations and manage them 
in a single place. You also have the history of your 
data transformation operations if you would like 
to roll back an operation. And last but not least, 
you can reuse and review your previous data 
transformations.

We have open-sourced the Dynamo Data 
Transform tool that we built for internal use to 
perform data transformations on DynamoDB and 
serverless-based environments and manage these 
formerly manual processes in a safe way.

The tool can be used as a Serverless Plugin and as 
a standalone NPM package.

• NPM

• GitHub

Feel free to provide feedback and contribute to the 
project if you find it useful.

Figure 2: Data Transformation Flow Chart

Learn how leaders like Disney+ Hotstar, 
Expedia, and Fanatics are evolving their 
data architecture for speed at scale.

Strategies for 
Speed at Scale

LEARN WHY & HOW

https://www.npmjs.com/package/dynamo-data-transform
https://github.com/jitsecurity/dynamo-data-transform
https://www.infoq.com/url/t/8f26c72e-90db-4593-a0e2-aa358cf7a2c4/?label=ScyllaDB-eMag-Banner
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Create Your Distributed Database on 
Kubernetes with Existing Monolithic 

by Maarit Widmann, Data Scoentist @KNIME,  Alfredo Roccato, Data Science Independent Consultant

In this article, the authors explain 
how correspondence analysis 
functions with an example of 
real social survey data. Also 
provided is an implementation of 
the example in KNIME Analytics 
Platform, an open source 
software, so that you can try out 
the analysis hands-on.

Introduction
Customer segments, personality 
profiles, social classes, and age 
generations are examples of 
effective references to larger 
groups of people sharing similar 
characteristics.

The characteristics that shape 
these groups are often manifold 
and thus require multivariate 
analysis.

One way to access the variables 
is via questionnaires. Because 
the variables are mostly 
qualitative, the questionnaires 
produce categorical data with 
predefined categories, for 
example, on a Likert-type scale.

The starting point to analyze the 
relationships between categorical 
variables is a contingency table 

which compares the categories 
pairwise.

As the next step, correspondence 
analysis (CA) performs a 
multivariate analysis on multiple 
contingency tables.

It projects them into a numeric 
feature space, which captures 
most of the variability in the data 
by fewer dimensions.

What Is Simple Correspondence 
Analysis?
Simple correspondence 
analysis is a technique to 
analyze relationships between 
categorical variables and create 

Understanding and Applying Correspondence 
Analysis

https://en.wikipedia.org/wiki/Likert_scale
https://openlibrary.org/books/OL35735067M/L'Analyse_des_donn%C3%A9es
https://openlibrary.org/books/OL35735067M/L'Analyse_des_donn%C3%A9es
https://www.infoq.com/articles/cassandra-kubernetes-microservices/
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profiles based on the projections 
of the original variables to the 
new dimensions that it creates. 
This is useful, for example, when 
analyzing and visualizing survey 
data.

CA processes a two-way 
contingency table that displays 
the frequency distribution 
between two variables. It 
represents the frequency 
distribution on numeric, 
orthogonal dimensions. Based 
on the proximity along the first 
few of these dimensions, we can 
visually explore the individuals’ 
and categories’ associations.

We can investigate, for example, 
if there is a relationship 
between interest in politics and 
demographics data such as 
age. Also, we can interpret a 
dimension generated by CA as a 
new, synthetic dimension, such 
as “status,” that captures several 
categories which together 
contribute to “high” or “low” 
status.

How To Perform Correspondence 
Analysis
Step 1: Data collection

We start the data collection by 
accessing survey data, with 
records for N individuals who 
have answered K questions.

As an example, we use the 
European Social Survey data 
from the year 2018 measuring 
the attitudes, beliefs and 
behavior patterns in European 
nations. The data contains 
metadata and answers from 
49,519 individuals recorded 
in 572 columns. We consider 
only a subset of the variables 
and perform CA to analyze the 
relationships between interest in 
politics, country, income, family 
relationship, gender, education, 
age, and internet usage.

These variables are transformed 
into a two-way contingency 
table (see the next step) 
based on the definition of row 
variables, column variables 
and supplemental variables as 
described below:

• Row variables refer to 
variables that represent the 
row IDs. In our example, 
the interest in politics is the 
row variable. It contains 
the following four nominal 
classes: not at all, hardly, 

quite, and very interested. The 
data for 98 participants who 
didn’t provide the information 
about their interest in politics 
(not applicable, refusal, no 
answer, don’t know) were 
discarded from the analysis.

• Column variables refer to 
variables that represent 
the column headers. The 
column variables are income, 
family relationship, gender, 
education, age, and internet 
usage.

• Supplementary variables can 
be used to interpret the 
resulting profiles, but they are 
not used in computing CA. In 
our example, “country” is the 
supplementary variable.

Note that if there were numeric 
variables, these had to be 
discretized before performing CA.

The survey data can be stored 
in varying formats, for example, 
in a csv file. Here, each row 
corresponds to an individual 
filling out the survey. Each 
column represents a survey 
question or metadata, such as 
the ID of the participant. (see 
Figure 1)

Figure 1. Raw survey data as a starting point of CA

https://ess-search.nsd.no/
https://en.wikipedia.org/wiki/Contingency_table
https://en.wikipedia.org/wiki/Contingency_table
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Notice that the column and row 
variables may need to be binned 
or encoded to help give a better 
understanding of the CA results. 
For example, the survey data 
reports 10 income deciles, which 
we encoded to seven income 
classes: very low, low, mid low, 
middle, mid high, high, and very 
high.

Step 2: Data preprocessing
In data preprocessing, we create 
a two-way contingency table that 
shows the frequency distribution 
of the row and column variables.

Figure 2. shows a part of the 
contingency table for the survey 
data in our example.

In the first row, it shows how 
the 17,837 survey participants 
hardly interested in politics are 
distributed into two categories, 
male and female, as well as into 
the seven categories describing 
family income. The more column 
variables there are, and the 
more categories in each column 
variable, the wider the table.

The transformation of the raw 
data into a contingency table is 
required to perform CA via the 
algorithms available, for example, 
in R software. In the next step, 
we explain how CA functions 
under the hood, although it is not 

necessary for executing such 
algorithms.

Step 3: Computing CA
Projecting the data into new 
numeric dimensions in CA works 
the same way as in principal 
component analysis (PCA), 
by sequentially constructing 
orthogonal dimensions of the 
data. This can be performed by 
singular value decomposition.

However, while in PCA, the 
decomposition is based on 
maximizing the variance; in CA 
it is based on maximizing the 
inertia.

For each row variable i, inertia 
is calculated with the following 
formula:

Inertia (i/GJ) =fi.d
2

x
2(i,GJ)

Where fi. is the weight, i.e., the 
marginal sum of row variable 
i, and d2

x
2(i,GJ) is the chi-

squared distance from the 
mean profile defined by the 
marginal probabilities of column 
variables J. The total inertia is 
calculated by summing up these 
inertias for all row variables I. 
In the extreme case, if the row 
reflects the mean profile, the 
inertia of that row variable is 
zero.

For column variables, the inertia 
is the sum of inertias of their 
categories j:

Inertia (j/GI) = f.j d
2

x
2(j,GI),

Where f.j is the weight, the 
marginal sum of column 
variable j, and d2

x
2(j,GI) is the chi-

squared distance from the mean 
profile defined by the marginal 
probabilities of I row variables.

The sum of inertias of all column 
variables j produces the same 
total inertia as the sum of 
inertias of all individuals i.

Step 4: Interpreting the results
In this step, we explain how 
to interpret the results of CA 
visually in a scree plot and biplot 
and numerically via the output 
statistics.

Scree plot

To compare the percentages 
of total inertia that the new 
dimensions explain, we can take 
a look at a scree plot as shown in 
Figure 3

In our example, the first 
dimension explains 89.4% of 
the inertia, while the second 
dimension explains 10.19% of it. 
Together, the first two 

Figure 2. A two-way contingency table showing the preprocessed survey data before computing 

https://en.wikipedia.org/wiki/Singular_value_decomposition
https://www.youtube.com/playlist?list=PLnZgp6epRBbTgO-l-6hLAKTstW7WSGh8A
https://www.youtube.com/playlist?list=PLnZgp6epRBbTgO-l-6hLAKTstW7WSGh8A
https://en.wikipedia.org/wiki/Chi-squared_test
https://en.wikipedia.org/wiki/Chi-squared_test
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dimensions explain 99.5% of the 
total inertia.

Biplot
Next, we project the row and 
column variables into the first 
two dimensions and explore 
them visually in a biplot. (see 
Figure 3)

The biplot shows the first two 
dimensions on the x- and y-axis. 
It is possible to show the row, 
column and supplementary 
variables along the same axes 
using transition formulas 
between the coordinates of row, 
column and supplementary 
variables.

Proximity in the feature space 
indicates positive association. 
For example, the group of 
individuals who are very 
interested in politics (PI: Very) is 
close to the category of very high 
income (FI:VeryHigh), and these 
variables are therefore strongly 
associated. Also, the categories 
of very high income and MA level 
education (EL: V2) are strongly 
associated. This implies that 
people with very high income 
have MA level education more 
often than an average person 
from any income class.

Also, the closer the angle 
between two groups/categories 
is to 90°, the less they are 
associated. For example, the 
categories “IU: Everyday” and 
“Age: 45-54” lie on the x- and 
y-axis, respectively. Therefore, 
this association is very weak. 

Figure 3. Scree plot showing the percentages of inertia captured by the 
new dimensions generated by CA

Figure 4. Biplot showing the row, column and supplementary variables in 
two-dimensional space

https://en.wikipedia.org/wiki/Biplot
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The contingency table in Figure 5 
below confirms this: There is little 
deviation between the observed 
and expected value.

The categories of the 
supplementary variable, i.e., the 

countries, help to interpret 
the dimensions. It seems 
that Switzerland (CN:CH) and 
the Nordic countries such as 
Denmark and Sweden (CN:DK 
and CN:SE) are strongly 
associated with the first 

dimension. Instead, the Baltic 
countries such as Estonia and 
Latvia (CN:EE and CN:LV) are 
strongly associated with the 
second dimension.

Statistics
Finally, we can inspect the 
groups, categories and new 
dimensions by looking at the 
output statistics. The table in 
Figure 6 shows a sample of the 
output statistics of CA for our 
example:

The table contains the 
variables as row IDs and the 
statistics as column headers. 
For supplementary columns, 
there are no statistics, except 
dimensions 1 and 2, because 
they don’t contribute to the 
dimensions. Dimension 1 seems 
to relate positively to high levels 
of interest in politics, family 
income, education, age group, 
etc. Therefore, Dimension 1, 
which is highly important, could 
be interpreted as a “status” 
dimension (high vs. low).

In the next table we explain 
what the output statistics of CA 
quantify and state an example 
question that we can answer by 
them.

Next, we show how to perform 
CA and produce the results 
introduced above in KNIME 
Analytics Platform.

Practical Implementation of CA
In this section, we will introduce 
how to perform the example 

Figure 5. A sample of a contingency table between analyzed variables

Figure 6 . The output statistics of CA
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application of this article, 
analyzing social survey data via 
CA, in KNIME Analytics Platform. 
The KNIME workflow below 
shows the steps.

You can download the 
Exploring categorical data 
via Correspondence Analysis 
workflow from the KNIME Hub 
and open it in KNIME Analytics 

Platform. KNIME Analytics 
Platform is open source and can 
be downloaded from the KNIME 
website.

The workflow progresses 
in four steps: data reading, 
preprocessing, descriptive 
analysis, and CA.

First, it accesses the data as a 
CSV file, which stores the data 
as shown in Figure 1. Second, 
it accesses the dictionaries 
that contain the descriptions 
of the codes to replace them 
in the data. After that, it bins 
some of the variables into fewer 
categories. Then, it creates the 
contingency table as shown in 
Figure 2.

Lastly, it computes the CA and 
produces a view that displays the 
scree plot, biplot, and statistics 
table (Figures 3-4 and Table 1). 
It performs CA using functions of 
the R software, in particular, the 
ca () function of the ca package. 
For the views, it uses the function 
ggplot () of the ggplot2 package. 
The KNIME Interactive R 
Statistics Integration allows us to 
write the script within the visual 
workflow.

In addition, it displays a bar chart 
and contingency table to explore 
the frequency distributions in the 
data in parallel to performing CA 
(Figure 5).

Summary
In this article, we introduced 
correspondence analysis, 

Figure 7. Example of KNIME workflow performing CA on European Social 
Survey data. You can download the workflow from then KNIME Hub.

Table 1. Definitions and interpretations of the output statistics produced 
by CA

https://kni.me/w/NpFKwwOmYluLxtM1
https://kni.me/w/NpFKwwOmYluLxtM1
https://www.knime.com/downloads
https://www.knime.com/downloads
https://cran.r-project.org/web/packages/ca/ca.pdf
https://ggplot2.tidyverse.org/
https://kni.me/e/6cbZ6X3DrLrH96WD
https://kni.me/e/6cbZ6X3DrLrH96WD
https://kni.me/w/NpFKwwOmYluLxtM1
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which analyzes associations 
in categorical data, and 
showed how it helps to analyze 
categorical data beyond a 
contingency table by projecting 
the categories of the variables 
onto new numeric dimensions. 
You can find these associations 
based on the proximity of the 
variables in a reduced feature 
space that could not otherwise 
be discovered through a pairwise 
analysis.
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