
In-Process Analytical Data
Management with DuckDB

Create Your Distributed
Database on Kubernetes with
Existing Monolithic Databases

Understanding and
Applying Correspondence
Analysis

FACILITATING THE SPREAD OF KNOWLEDGE AND INNOVATION IN PROFESSIONAL SOFTWARE DEVELOPMENT

Data Engineering
Innovations

 The InfoQ eMag / Issue #109 / June 2023

GENERAL FEEDBACK feedback@infoq.com / ADVERTISING sales@infoq.com / EDITORIAL editors@infoq.com

Data Engineering
Innovations

IN THIS ISSUE

InfoQInfoQ@InfoQInfoQ

Understanding and Applying
Correspondence Analysis 43

In-Process Analytical Data
Management with DuckDB 6

15Create Your Distributed
Database on Kubernetes with
Existing Monolithic Databases

PRODUCTION EDITOR Ana Ciobotaru / COPY EDITOR Susan Conant / DESIGN Dragos Balasoiu, Ana Ciobotaru

InfoQ Mastodon

24Design Pattern Proposal for
Autoscaling Stateful Systems

34DynamoDB Data Transformation
Safety: from Manual Toil to

Automated and Open Source

https://www.youtube.com/user/MarakanaTechTV
https://www.linkedin.com/company/infoq/
http://twitter.com/infoq
https://www.facebook.com/InfoQ-75911537320
http://@infoq@techhub.social

Hannes MühleisenHannes Mühleisen
is a creator of the DuckDB database
management system and Co-founder
and CEO of DuckDB Labs, a consulting
company providing services around
DuckDB. He is also a senior researcher
of the Database Architectures group at
the Centrum Wiskunde & Informatica
(CWI), the Dutch national research lab for
Mathematics and Computer Science in
Amsterdam. Hannes is also Professor of
Data Engineering at Radboud Universiteit
Nijmegen. His’ main interest is analytical
data management systems.

Trista Pan
SphereEx Co-Founder & CTO, Apache
Member & Incubator Mentor, Apache
ShardingSphere PMC, AWS Data Hero,
China Mulan Open Source Community
Mentor, Tencent Cloud TVP. She used to be
responsible for the design and development
of the intelligent database platform of JD
Digital Science and Technology. She now
focuses on the distributed database &
middleware ecosystem, and open-source
community.

CONTRIBUTORS

Guy Braunstain
is a Tel Aviv-based passionate Full Stack
Developer who flourishes in leading
development processes from design to
implementation through to customer
satisfaction. He is continuously searching
for innovation and making dev team
cycles shorter and more efficient. Prior to
working at Jit, Guy served in an elite IDF
technological unit, in his current role he
is excited to be part of the team making
security easier to consume and manage for
all dev-teams.

Rogerio Robetti
is a software engineer with many years of
experience, an enthusiast and advocate
of modern approaches to software
engineering. Has a soft spot for resource
usage optimization and automation.
Have worked in very heterogeneous
environments and different roles from
developer to architect and from startup
size companies to global organizations,
mostly producing enterprise grade web
applications but also having experience in
R&D, mobile and mainframe applications.
Currently lives in Dublin, Republic of Ireland.

Maarit WidmannMaarit Widmann
is a data scientist at KNIME. She started
with quantitative sociology and holds her
bachelor’s degree in social sciences. The
University of Konstanz made her drop
the “social” as a Master of Science. Her
ambition is to communicate the concepts
behind data science to others in videos and
blog posts. Follow Maarit on LinkedIn.

Alfredo Roccato
is an independent consultant and trainer
with a focus on data science. He studied
statistics at the Catholic University in Milan
and has been serving companies with
business intelligence and analytics for over
35 years. Follow Alfredo on LinkedIn.

https://www.linkedin.com/in/maarit-widmann-02641a170/
https://www.linkedin.com/in/alfredo-roccato-2699094/

A LETTER FROM
THE EDITOR

 Srini Penchikala
currently works as Senior Software
Architect in Austin, Texas. He is
also the Lead Editor for AI/ML/Data
Engineering community at InfoQ.
Srini has over 22 years of experience
in software architecture, design and
development. He is the author of “Big
Data Processing with Apache Spark.
He is also the co-author of “Spring
Roo in Action” book from Manning
Publications. Srini has presented at
conferences like Big Data Conference,
Enterprise Data World, JavaOne, SEI
Architecture Technology Conference
(SATURN), IT Architect Conference
(ITARC), No Fluff Just Stuff, NoSQL
Now and Project World Conference.
He also published several articles
on software architecture, security
and risk management, and NoSQL
databases on websites like InfoQ, The
ServerSide, OReilly Network (ONJava),
DevX Java, java.net and JavaWorld.

Today’s modern data architecture
stacks look significantly different
from the data architecture
models from only a few years
ago.

Data streaming and stream
processing have become the
core components of modern
data architecture. Real time data
streams are being managed
as first-class citizens in data
processing analytics solutions.
Some companies are even
shifting their architecture
and technology thinking
from “everything’s at rest” to
“everything’s in motion.”

Change data capture (CDC) has
become a critical design pattern
in data engineering use cases.
CDC can be used in event-
driven microservices based
applications, along with data
streaming to implement robust
solutions.

The emphasis on data streams
is also driving innovations in the
data governance space such as
the stream catalog and stream
lineage.

Data mesh architecture, which
has been getting a lot of attention
recently, is built on four solid
principles: domain ownership,
data as a product, self-serve
data infrastructure platform,
and federated governance. Data
mesh is expected to have a
huge impact on the overall data
management programs and
initiatives in organizations.

Similar to many compute
services in the cloud platforms,
data storage services and
databases now support
serverless models where you
only pay for what you use.

On the security and regulatory
compliance side, data residency

http://www.infoq.com/author/Srini-Penchikala
http://www.manning.com/SpringRooinAction) from Manning Publications. Srini
http://www.manning.com/SpringRooinAction) from Manning Publications. Srini

and data sovereignty are getting
a lot of attention to ensure the
consumers’ data is protected and
privacy is maintained throughout
the life of the data.

Next-generation data engineering
innovations will build on these
recent trends to provide even
more robust, secure, highly
available and resilient data
solutions to the development
community.

 In the InfoQ “Data Engineering
Innovations” eMag, you’ll find
up-to-date case studies and
real-world data engineering
solutions from technology SME’s
and leading data practitioners in
the industry.

“In-Process Analytical Data
Management with DuckDB” by
Dr. Hannes Mühleisen highlights
the open-source in-process
OLAP database designed for
analytical data management,
how it eliminates the need to
copy large amounts of data
over sockets, resulting in
improved performance. Author
also discusses the database
support for Morsel-Driven
parallelism which allows
efficient parallelization across
multiple cores while maintaining
awareness of multi-core
processing.

Trista Pan’s article “Create
Your Distributed Database
on Kubernetes with Existing
Monolithic Databases”
emphasizes the role Kubernetes

plays in supporting cloud
native databases and how
Apache ShardingSphere can
transform any database to a
distributed database system,
while enhancing it with functions
such as sharding, elastic scaling,
encryption features, etc. Author
demonstrates how to deploy
ShardingSphere-Operator, create
a sharding table using DistSQL,
and test the Scaling and HA
of the ShardingSphere-Proxy
cluster.

“Design Pattern Proposal for
Autoscaling Stateful Systems”
by Rogerio Robetti captures the
need for proven design patterns
for autoscaling stateful systems.
Synchronization of data on new
nodes is a big challenge when
scaling up a stateful system.
Robetti discusses various use
cases and solution designs that
can be used as a foundation for
stateful autonomous scalability
implementations.

Guy Braunstain’s article titled
“DynamoDB Data Transformation
Safety: from Manual Toil to
Automated and Open Source”
focuses on data transformation
as a continuous challenge
in engineering especially in
cloud hosted solutions. There
is a current lack of tools to
perform data transformations
programmatically, in an
automated way. The open
source utility Dynamo Data
Transform can be used as a
data transformation tool for
DynamoDB based systems.

And “Understanding and Applying
Correspondence Analysis”
authored by Maarit Widmann
& Alfredo Roccato describes
the simple correspondence
analysis (CA) technique to
analyze relationships between
categorical variables and create
profiles based on the projections
of the original variables to the
new dimensions that it creates.
The authors demonstrate how
to perform Correspondence
Analysis with steps like data
collection, data preprocessing,
computing CA, and interpreting
the results, all using the KNIME
open-source analytics platform

We hope that you find value in
the articles and resources in
this eMag and are able to apply
some of these design patterns
and techniques in your own
data engineering projects and
initiatives.

We would love to receive your
feedback via editors@infoq.com
or on Twitter about this eMag.
I hope you have a great time
reading it!

The InfoQ
 eM

ag / Issue #109/ June 2023

6

In-Process Analytical Data Management
with DuckDB
by Hannes Mühleisen, Co-founder and CEO @ DuckDB Labs|Co-Creator of DuckDB

Why did I embark on the journey
of building a new database?
It started with a statement by
the well-known statistician
and software developer Hadley
Wickham:

If your data fits in memory there
is no advantage to putting it in a
database: it will only be slower
and more frustrating.

This sentiment was a blow
and a challenge to database
researchers like myself. What are
the aspects that make databases
slow and frustrating? The first
culprit is the client-server model.

When conducting data analysis
and moving large volumes of
data into a database from an
application, or extracting it from
a database into an analysis
environment like R or Python, the
process can be painfully slow.

I tried to understand the origins
of the client-server architectural
pattern, and I authored the paper,
“Don’t Hold My Data Hostage
– A Case For Client Protocol
Redesign”.

Comparing the database client
protocols of various data
management systems, I timed
how long it took to transmit a

fixed dataset between a client
program and several database
systems.

As a benchmark, I used
the Netcat utility to send the
same dataset over a network
socket.

Compared to Netcat, transferring
the same volume of data with
MySQL took ten times longer, and
with Hive and MongoDB, it took
over an hour. The client-server
model appears to be fraught with
issues.

https://www.infoq.com/articles/analytical-data-management-duckdb/
https://hadley.nz/
https://hadley.nz/
https://vldb.org/pvldb/vol10/p1022-muehleisen.pdf
https://vldb.org/pvldb/vol10/p1022-muehleisen.pdf
https://vldb.org/pvldb/vol10/p1022-muehleisen.pdf
https://netcat.sourceforge.net/

7

The InfoQ
 eM

ag / Issue #109/ June 2023

SQLite
My thoughts then turned to
SQLite. With billions and billions
of copies existing in the wild,
SQLite is the most extensively
used SQL system in the world.
It›s quite literally everywhere:
you›re daily engaging with
dozens, if not hundreds, of
instances unbeknownst to you.

SQLite operates in-process, a
different architectural approach
integrating the database
management system directly into
a client application, avoiding the
traditional client-server model.

Data can be transferred within
the same memory address space,
eliminating the need to copy and
serialize large amounts of data
over sockets.

However, SQLite isn’t designed
for large-scale data analysis and
its primary purpose is to handle
transactional workloads.

DuckDB
Several years ago, Mark
Raasveldt and I began working
on a new database, DuckDB.
Written entirely in C++, DuckDB
is a database management
system that employs a vectorized
execution engine. It is an in-
process database engine and we
often refer to it as the ‘SQLite for
analytics’. Released under the
highly permissive MIT license,
the project operates under the
stewardship of a foundation,
rather than the typical venture
capital model.

What does interacting with
DuckDB look like?

import duckdb
duckdb.sql(‘LOAD httpfs’)
duckdb.sql(“SELECT * FROM ‘https://
github.com/duckdb/duckdb/blob/
master/data/parquet-testing/
userdata1.parquet’”).df()

In these three lines, DuckDB is
imported as a Python package,
an extension is loaded to enable
communication with HTTPS
resources, and a Parquet file is

read from a URL and converted
back to a Panda DataFrame (DF).

DuckDB, as demonstrated in this
example, inherently supports
Parquet files, which we consider
the new CSV. The LOAD httpfs
call illustrates how DuckDB can
be expanded with plugins.

There’s a lot of intricate work
hidden in the conversion to DF,
as it involves transferring a result
set, potentially millions of lines.
But as we are operating in the
same address space, we can
bypass serialization or socket
transfer, making the process
incredibly fast.

We’ve also developed a
command-line client, complete
with features like query
autocompletion and SQL syntax
highlighting. For example, I can
initiate a DuckDB shell from my
computer and read the same
Parquet file:

If you consider the query:

SELECT * FROM userdata.parquet;

you realize that would not
typically work in a traditional SQL
system, as userdata.parquet is
not a table, it is a file. The table
doesn’t exist yet, but the Parquet
file does. If a table with a specific
name is not found, we search
for other entities with that name,

Figure 1: Comparing different clients; the dashed line is the wall clock
time for netcat to transfer a CSV of the data

https://www.sqlite.org/mostdeployed.html
https://www.linkedin.com/in/mark-raasveldt-256b9a70/
https://www.linkedin.com/in/mark-raasveldt-256b9a70/
https://duckdb.org/
https://duckdb.org/foundation/

The InfoQ
 eM

ag / Issue #109/ June 2023

8

such as a Parquet file, directly
executing queries on it.

In-Process Analytics
From an architectural standpoint,
we have a new category of data
management systems: in-
process OLAP databases.
SQLite is an in-process system,
but it is geared toward OLTP
(Online Transaction Processing).
When you think of a traditional
client-server architecture for
OLTP, PostgreSQL is instead the
most common option.

Figure 2: OLTP versus OLAP

On the OLAP side, there have
been several client-server
systems, with ClickHouse being
the most recognized open-
source option. However, before
the emergence of DuckDB, there
was no in-process OLAP option.

Technical Perspective of DuckDB
Let’s discuss the technical
aspects of DuckDB, walking
through the stages of processing
the following query in Figure 3.

The example involves selecting a
name and sum from the joining
of two tables, customer, and sale
that share a common column,
cid. The goal is to compute the
total revenue per customer,
summing up all revenue

and including tax for each
transaction.

When we run this query, the
system joins the two tables,
aggregating customers based
on the value in the cid column.
Then, the system computes the
revenue + tax projection, followed
by a grouped aggregation by cid,
where we compute the first name
and the final sum.

DuckDB processes this query
through standard phases: query
planning, query optimization, and
physical planning, and the query
planning stage is further divided
into so-called pipelines.

For example, this query has three
pipelines, defined by their ability
to be run in a streaming fashion.
The streaming ends when we
encounter a breaking operator,
that is an operator that needs to

retrieve the entire input before
proceeding.

Figure 4: First pipeline

The first pipeline scans the
customer table and constructs
a hash table. The hash join is
split into two phases, building
the hash table on one side of the
join, and probing, which happens
on the other side. The building
of the hash table requires seeing
all data from the left-hand side
of the join, meaning we must
run through the entire customer
table and feed all of it into the
hash join build phase. Once this

Figure 3: A simple select query on DuckDB

https://clickhouse.com/

9

The InfoQ
 eM

ag / Issue #109/ June 2023

pipeline is completed, we move
to the second pipeline.

Figure 5: Second pipeline

The second pipeline is larger
and contains more streaming
operators: it can scan the sales
table, and look into the hash table
we›ve built before to find join
partners from the customer table.
It then projects the revenue + tax
column and runs the aggregate,
a breaking operator. Finally, we
run the group by build phase and
complete the second pipeline.

Figure 6: Third pipeline

We can schedule the third and
final pipeline hat reads the
results of the GROUP BY and
outputs the result. This process
is fairly standard and many

database systems take a similar
approach to query planning.

Row-at-a-time
To understand how DuckDB
processes a query, let’s consider
first the traditional Volcano-style
iterator model that operates
through a sequence of iterators:
every operator exposes an
iterator and has a set of iterators
as its input.

The execution begins by trying
to read from the top operator, in
this case, the GROUP BY BUILD
phase. However, it can’t read
anything yet as no data has been
ingested. This triggers a read
request to its child operator, the
projection, which reads from its
child operator, the HASH JOIN
PROBE. This cascades down until
it finally reaches the sale table.
The sale table generates a tuple,
for example, 42, 1233,

422, representing the ID, revenue,
and tax columns. This tuple then
moves up to the HASH JOIN
PROBE, which consults its built
hash table. For instance, it knows
that ID 42 corresponds to the
company ASML and it generates
a new row as the join result,
which is ASML, 1233, 422.

This new row is then processed
by the next operator, the
projection, which sums up the
last two columns, resulting in
a new row: ASML, 1355. This
row finally enters the GROUP BY
BUILD phase.

This tuple-at-a-time, row-at-
a-time approach is common
to many database systems
such as PostgreSQL, MySQL,
Oracle, SQL Server, and SQLite.
It’s particularly effective for
transactional use cases, where
single rows are the focus,

Figure 7: Volcano-style iterator model

The InfoQ
 eM

ag / Issue #109/ June 2023

10

but it has a major drawback
in analytical processing: it
generates significant overhead
due to the constant switching
between operators and iterators.

One possible improvement
suggested by the literature is
to just-in-time (JIT) compile
the entire pipeline. This option,
though viable, isn’t the only one.

Vector-at-a-time
Let’s consider the operation of
a simple streaming operator like
the projection.

We have an incoming row
and some pseudocode: input.
readRow reads a row of input, the
first value remains unchanged,

and the second entry in the
output becomes the result of
adding the second and third
values of the input, with the
output then written. While this
approach is easy to implement, it
incurs a significant performance
cost due to function calls for
every value read.

An improvement over the row-
at-a-time model is the vector-
at-a-time model, first proposed
in “MonetDB/X100: Hyper-
Pipelining Query Execution” in
2005.

This model processes not just
single values at a time, but short
columns of values collectively
referred to as vectors. Instead

of examining a single value for
each row, multiple values are
examined for each column at
once. This approach reduces the
overhead as type switching is
performed on a vector of values
instead of a single row of values.

The vector-at-a-time model
strikes a balance between
columnar and row-wise
executions. While columnar
execution is more efficient, it
can lead to memory issues. By
limiting the size of columns to
something manageable, the
vector-at-a-time model avoids
JIT compilation. It also promotes
cache locality, which is critical for
efficiency.

The importance of cache locality
is illustrated by the well-known
Latency Numbers Everyone
Should Know, Figure 10.

The graphic, provided by
Google’s Peter Norvig and Jeff
Dean, highlights the disparity
between the L1 cache reference
(0.5 nanoseconds) and the
main memory reference (100
nanoseconds), a factor of 200.

Given that L1 cache reference
has become 200 times faster
since 1990 compared to memory
reference, which is only twice
as fast, there’s a significant
advantage in having operations
fit within the CPU cache.

This is where the beauty of
vectorized query processing lies.

Figure 8: Implementation of a projection

Figure 9: The vector-at-a-time model

https://www.cidrdb.org/cidr2005/papers/P19.pdf
https://www.cidrdb.org/cidr2005/papers/P19.pdf
https://gist.github.com/jboner/2841832
https://gist.github.com/jboner/2841832

11

The InfoQ
 eM

ag / Issue #109/ June 2023

Let’s consider the same
projection of revenue + tax
example we discussed before.
Instead of retrieving a single row,
we get as input three vectors of
values and output two vectors
of values. We read a chunk (a
collection of small vectors of
columns) instead of a single
row. As the first vector remains
unchanged, it’s reassigned to
the output. A new result vector
is created, and an addition
operation is performed on every
individual value in the range from
0 to 2048.

This approach allows the
compiler to insert special
instructions automatically and
avoids function call overhead

by interpreting and switching
around data types and operators
only at the vector level.

This is the core of vectorized
processing.

Exchange-Parallelism
Vectorized processing being
efficient on a single CPU is not
enough, it also needs to perform
well on multiple CPUs. How can
we support parallelism?

Goetz Graefe, principal scientist
at Google, in his paper “Volcano -
An Extensible and Parallel Query
Evaluation System” described the
concept of exchange operator
parallelism.

In this example, three partitions
are read simultaneously. Filters
are applied and values are
pre-aggregated, then hashed.
Based on the values of the
hash, the data is split up, further
aggregated, re-aggregated, and
then the output is combined.
By doing this, most parts of the
query are effectively parallelized.

For instance, you can observe
this approach in Spark’s
execution of a simple query.
After scanning the files, a
hash aggregate performs a
partial_sum.

Then, a separate operation
partitions the data, followed by
a re-aggregation that computes
the total sum. However, this has
been proven to be problematic in
many instances.

Figure 10: Latency Numbers Everyone Should Know

Figure 11: Implementation of a projection with vectorized query processing

Figure 12: Exchange operator
parallelism

The InfoQ
 eM

ag / Issue #109/ June 2023

12

Morsel-Driven Parallelism
A more modern model for
achieving parallelism in SQL
engines is Morsel-Driven
parallelism. As in the approach
above, the input level scans are
divided, resulting in partial scans.
In our second pipeline, we have
two partial scans of the sale
table, with the first one scanning
the first half of the table and the
second one scanning the latter
half.

The HASH JOIN PROBE remains
the same as it still operates on
the same hash table from the
two pipelines. The projection
operation is independent, and
all these results sync into the
GROUP BY operator, which is our
blocking operator. Notably, you
don›t see an exchange operator
here.

Unlike the traditional exchange
operator-based model,

the GROUP BY is aware of the
parallelization taking place and
is equipped to efficiently manage
the contention arising from
different threads reading groups
that could potentially collide. In
Morsel-Driven parallelism, the
process begins (Phase 1) with
each thread pre-aggregating its
values. The separate subsets or
morsels of input data, are built
into separate hash tables.

The next phase (Phase
2) involves partition-wise
aggregation: in the local hash
tables, data is partitioned based
on the radixes of the group keys,
ensuring that each hash table
cannot contain keys present in
any other hash table. When all
the data has been read and it’s
time to finalize our hash table
and aggregate, we can select
the same partition from each
participating thread and schedule
more threads to read them all.

Though this process is more
complex than a standard
aggregate hash table, it allows
the Morsel-Driven model to
achieve great parallelism. This
model efficiently constructs
an aggregation over multiple
inputs, circumventing the issues
associated with the exchange
operator.

Simple Benchmark
I conducted a simple benchmark,
using our example query with
some minor added complexity in
the form of an ORDER BY and a
LIMIT clause. The query selects

Figure 13: Morsel-Driven parallelism

Figure 14: Partitioning hash tables for parallelized merging

13

The InfoQ
 eM

ag / Issue #109/ June 2023

the name and the sum of revenue
+ tax from the customer and
sale tables, which are joined and
grouped by the customer ID.

The experiment involved two
tables: one with a million
customers and another with a
hundred million sales entries.
This amounted to about 1.4
gigabytes of CSV data, which is
not an unusually large dataset.

DuckDB completed the query on
my laptop in just half a second.
On the other hand, PostgreSQL,
after I had optimized the
configuration, took 11 seconds to
finish the same task. With default
settings, it took 21 seconds.

While DuckDB could process the
query around 40 times faster
than PostgreSQL, it’s important
to note that this comparison is
not entirely fair, as PostgreSQL
is primarily designed for OLTP
workloads.

Conclusions
The goal of this article is to
explain the design, functionality,
and rationale behind DuckDB,
a data engine encapsulated in
a compact package. DuckDB
functions as a library linked
directly to the application

process, boasting a small
footprint and no dependencies
and allowing developers to
easily integrate a SQL engine for
analytics.

I highlighted the power of in-
process databases, which lies
in their ability to efficiently
transfer result sets to clients and
write data to the database. An
essential component of

DuckDB’s design is vectorized
query processing: this technique
allows efficient in-cache
operations and eliminates the
burden of the function call
overhead.

Lastly, I touched upon DuckDB’s
parallelism model: Morsel-
Driven parallelism supports
efficient parallelization across
any number of cores while
maintaining awareness of multi-
core processing, contributing to
DuckDB’s overall performance
and efficiency.

Figure 15: The simple benchmark

The InfoQ
 eM

ag / Issue #109/ June 2023

14

How Disney+ Hotstar Modernized its Data
Architecture for Scale

SPONSORED ARTICLE

by Cynthia Dunlop, Senior Director of Content Strategy @ ScyllaDB

Try ScyllaDB Cloud with your
projects - 30 days free.

Disney+ Hotstar, India’s most
popular streaming service,
accounts for 40% of the global
Disney+ subscriber base.

Disney+ Hotstar offers over
100,000 hours of content on
demand, as well as livestreams
of the world’s most watched
sporting events.

The “Continue Watching” feature
is critical to the on demand
streaming experience for the
300 million-plus monthly active
users. That’s what lets you
pause a video on one device and
instantly pick up where you left
off on any device, anywhere in
the world. It’s also what entices
you to binge-watch your favorite
series: complete one episode of a
show and the next one just starts
playing automatically.

However, it’s not easy to make
things so simple. In fact, the
underlying data infrastructure
powering this feature had grown
overly complicated. It was
originally built on a combination
of Redis and Elasticsearch,
connected to an event processor
for Apache Kafka streaming
data. Having multiple data stores
meant maintaining multiple data

models, making each change
a huge burden. Moreover, data
doubling every six months
required constantly increasing
the cluster size, resulting in yet
more admin and soaring costs.

Previous architecture: Here’s
how the “Continue Watching”
functionality was originally
architected.

First, the user’s client would
send a “watch video” event to
Kafka. From Kafka, the event
would be processed and saved
to both Redis and Elasticsearch.
If a user opened the home page,
the backend was called, and
data was retrieved from Redis
and Elasticsearch. Their Redis
cluster held 500 GB of data, and
the Elasticsearch cluster held 20
terabytes.

Their key-value data ranged
from 5 to 10 kilobytes per event.
Once the data was saved, an
API server read from the two
databases and sent values
back to the client whenever the
user next logged in or resumed
watching. Redis provided
acceptable latencies, but the
increase in data size meant that
they needed to horizontally scale

their cluster. This increased
their cost every three to four
months. Elasticsearch latencies
were on the higher end of 200
milliseconds. Moreover, the
average cost of Elasticsearch
was quite high considering the
returns. They often experienced
issues with node maintenance
and manual effort was required
to resolve the issues.

Modernized architecture: First,
the team adopted a new data
model that could suit both use
cases. Then, they set out to
adopt a new database. Apache
Cassandra, Apache HBase,
Amazon DynamoDB, and
ScyllaDB were considered. The
team selected ScyllaDB for two
key reasons. 1) Consistently
low latencies for both reads
and writes, which would ensure
a snappy user experience for
today’s demanding customers. 2)
ScyllaDB Cloud, a fully managed
database as a service (NoSQL
DBaaS), offered a much lower
cost than the other options they
considered.

https://www.infoq.com/url/t/de171f6c-2e1c-43d4-a284-5fd54c529657/?label=ScyllaDB-eMag-Article
https://www.infoq.com/url/t/de171f6c-2e1c-43d4-a284-5fd54c529657/?label=ScyllaDB-eMag-Article

15

The InfoQ
 eM

ag / Issue #109/ June 2023

Create Your Distributed Database on
Kubernetes with Existing Monolithic

by Trista Pan, CTO & Co-founder of SphereEx

Background
Most of the recent convenience
upgrades that have blessed
peoples’ lives in the 21st
century can be traced back to
the widespread adoption of the
Internet.

Constant connectivity at our
fingertips improved our lives,
and created new technical
infrastructure requirements
to support high-performance
Internet services. Developers
and DevOps teams have become
focused on ensuring the backend
infrastructure’s availability,
consistency, scalability,

resilience, and fully automated
management.

Examples of issues that tech
teams are constantly struggling
with include managing and
storing large amounts of
business data and creating
the conditions to ensure that
infrastructures deliver optimal
service to the applications.

Also, designing technical
architecture while thinking ahead
to meet future requirements and
evolving modern applications to
be able to “live” in the cloud.

The cloud is game-changing
technology, and if you haven’t
yet, you should get familiar with
it. It has already transformed
infrastructure as we know it,
from development to delivery,
deployment, and maintenance.

Nowadays, modern applications
are embracing the concept of
anything-as-a-service from
various cloud vendors, and
developer and operations teams
are considering upgrading legacy
workloads to future cloud-native
applications.

Create Your Distributed Database on Kubernetes
with Existing Monolithic Databases

https://www.infoq.com/articles/kubernetes-databases-apache-sharding-sphere/

The InfoQ
 eM

ag / Issue #109/ June 2023

16

Microservices on Kubernetes
To address the challenges
mentioned above, we are
witnessing an evolution of the
application layer from monolithic
services to microservices. By
dividing a single monolithic
service into smaller units,
modern applications can become
independent of one another while
eliminating unwanted effects of
development, deployment, and
upgrading.

Moreover, to decouple and
simplify communication services,
such as APIs and calls, service
mesh appeared and took over.
Kubernetes provides an abstract
platform and mechanism for
this evolution, explaining its
popularity.

If I had to pinpoint the reason
why Kubernetes is so popular, I’d
say that it’s because, according
to the Kubernetes docs:

Kubernetes provides you with
a framework to run distributed
systems resiliently. It takes care
of scaling and failover for your
application, provides deployment
patterns, and more. For example,
Kubernetes can easily manage
a canary deployment for your
system. (From “Why you need
Kubernetes and what it can do”
section.)

Kubernetes is an ideal platform
for managing the microservice’s
lifecycle, but what about the
database, a stateful service?

Databases
The application layer has
adopted microservices as the
solution to address the issues
previously introduced here. Still,
when it comes to the database
layer, the situation is a little
different.

To answer the pain points
we raised, we can look at the
database layer. It uses a different
method, yet somewhat similar:
sharding, a.k.a. distributed
architecture.

Currently, this distributed
architecture is ubiquitous,
whether we’re talking about
NoSQL databases, such
as MongoDB, Cassandra,
Hbase, DynamoDB, or
NewSQL databases, such
as CockroachDB, Google
Spanner, Aurora, and so forth.
Distributed databases require
splitting the monolithic one
into smaller units, or shards, for
higher performance, improved
capability, elastic scalability, etc.

One thing all of these database
vendors have in common is
that they all must consider
historical migration to streamline
this evolution process. They
all provide data migration
from existing Oracle, MySQL,
PostgreSQL, and SQLServer
databases, just to name a few,
to their new database offerings.
That’s why CockroachDB is
compatible with the PostgreSQL
protocol, Vitess provides a
sharding feature for MySQL, or

AWS has Aurora-MySQL and
Aurora-PostgreSQL.

Database on Cloud and
Kubernetes
The advent of the cloud
represents the next challenge
for databases. Cloud platforms
that are “go-on-demand,”
“everything-as-a-service,”
or “out-of-box” are currently
changing the tech world.

Consider an application
developer. To stay on pace with
the current trends, the developer
adheres to the cloud-native
concept and prefers to deliver
the applications on the cloud
or Kubernetes. Does this mean
it is time for databases to be
on the cloud or Kubernetes?
The majority of readers
would probably answer with a
resounding yes - which explains
why the market share of the
Database-as-a-service (DBaaS)
is steadily increasing.

Nevertheless, if you’re from the
buy side for these services, you
may wonder which vendor can
promise you indefinite support.
The truth is that nobody can
give a definitive answer, so
multi-cloud comes to mind, and
databases on Kubernetes seem
to have the potential to deliver on
this front.

This is because Kubernetes is
essentially an abstraction layer
for container orchestration
and is highly configurable and
extensible, allowing users to

https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/

17

The InfoQ
 eM

ag / Issue #109/ June 2023

do custom coding for their
specific scenarios. Volumes on
Kubernetes, for example, are
implemented and provided by
many cloud vendors. If services
are deployed on Kubernetes,
applications will be able to
interact with Kubernetes rather
than different types of specific
cloud services or infrastructure.
This philosophy has already
proven to work well in the case
of stateless applications or
microservices. As a result of
these successful cases, people
are thinking about how to put
databases on Kubernetes to
become cloud neutral.

A drawback to this solution is
that it is more difficult to manage
than the application layer, as
Kubernetes is designed for
stateless applications rather
than databases and stateful
applications. Many attempts
to leverage Kubernetes’
fundamental mechanisms, such
as StatefulSet and Persistent
Volume, overlay their custom
coding to address the database
challenge on Kubernetes.
This approach can be seen
in operators of MongoDB,
CockroachDB, PostgreSQL, and
other databases.

Database Compute-Storage
Architecture
This approach has become
common, but is it the only
one? My answer is no, and the
following content will introduce
you to and demonstrate another
method for converting your

existing monolithic database into
a distributed database system
running on Kubernetes in a more
cloud-native pattern.

With the help of the following
illustration, let’s first consider
why this is possible.

As you can see from the
illustration, the database has
two capabilities: computing and
storage.

MySQL, PostgreSQL, and other
single-node databases combine
or deploy two components on a
single server or container.

Apache ShardingSphere
Apache ShardingSphere is the
ecosystem to transform any
database into a distributed
database system and enhance
it with sharding, elastic scaling,
encryption features, and
more. It provides two clients,
ShardingSphere-Proxy and
ShardingSphere-Driver.

ShardingSphere-Proxy is a
transparent database proxy that
acts as a MySQL or PostgreSQL
database server while
supporting sharding databases,
traffic governance (e.g., read/
write splitting), automatically
encrypting data,

SQL auditing, and so on. All of its
features are designed as plugins,
allowing users to leverage
DistSQL (Distributed SQL) or a
YAML configuration to select
and enable only their desired
features.

ShardingSphere-JDBC is a
lightweight Java framework that
brings additional features to
Java’s JDBC layer. This driver
shares most of the same features
with ShardingSphere-Proxy.

As I’ve introduced earlier, if we
view monolithic databases as
shards (aka storage nodes)
and ShardingSphere-Proxy or
ShardingSphere-JDBC as the

https://shardingsphere.apache.org/
https://www.mysql.com/
https://www.postgresql.org/

The InfoQ
 eM

ag / Issue #109/ June 2023

18

global server (aka computing
node), then ultimately, the result
is a distributed database system.
It can be graphically represented
as follows:

Because ShardingSphere-
Proxy acts as a MySQL or
PostgreSQL server, there is no
need to change the connection
method to your legacy databases
while ShardingSphere-JDBC
implements the JDBC standard
interface. This significantly
minimizes the learning curve and
migration costs.

Furthermore, ShardingSphere
provides DistSQL, a SQL-style
language for managing your
sharding database and

dynamically controlling these
distributed database system’s
workloads, such as SQL audit,
read/writing splitting, authority,
and so on.

For example, you may use
`CREATE TABLE t_order ()` SQL
to create a new table in MySQL.
With ShardingSphere-Proxy,
`CREATE SHARDING TABLE RULE
t-order ()` will help you create
a sharding table in your newly
upgraded distributed database
system.

ShardingSphere-On-Cloud
So far, we’ve solved the sharding
problem, but how do we
make it work on Kubernetes?
ShardingSphere-on-cloud

provides ShardingSphere-
Operator-Chart and
ShardingSphere-Chart to help
users deploy ShardingSphere-
Proxy and ShardingSphere-
Operator clusters on Kubernetes.

ShardingSphere-Chart and
ShardingSphere-Operator-Chart
Two Charts help users deploy the
ShardingSphere-Proxy cluster,
including proxies, governance
center, and Database connection
driver, and ShardingSphere-
Operator using helm commands.

ShardingSphere-Operator
ShardingSphere-
Operator is a predefined
CustomResourceDefinition that
describes ShardingSphere-Proxy
Deployment on Kubernetes.
Currently, this operator provides
HPA (Horizontal Pod Autoscaler)
based on CPU metric and
ensures ShardingSphere-Proxy
high availability to maintain
the desired replica number.
Thanks to community feedback,
throughout development
iterations, we’ve found out that
autoscaling and availability are
our users’ foremost concerns.
In the future, the open-source
community will release even
more useful features.

New solution
Users can easily deploy and
manage ShardingSphere clusters
and create their distributed
database system on Kubernetes
using these tools, regardless of
where their monolithic databases
reside.

https://github.com/apache/shardingsphere-on-cloud

19

The InfoQ
 eM

ag / Issue #109/ June 2023

As previously stated, a database
is made up of computing
nodes and storage nodes. A
distributed database will divide
and distribute these nodes.
As a result, you can use your
existing databases as the new
distributed database system’s
storage nodes. The highlight of
this solution is adopting a flexible
computing-storage-splitting
architecture, utilizing Kubernetes
to manage stateless computing
nodes, allowing your database to
reside anywhere and drastically
reducing upgrading costs.

ShardingSphere-Proxy will act
as global computing nodes to
handle user requests, obtain
local resultSet from the sharded
storage nodes, and compute the
final resultSet for users. This
means there is no need to do
dangerous manipulation work on
your database clusters. You only
have to import ShardingSphere
into your database infrastructure
layer and combine databases
and ShardingSphere to make it a
distributed database system.

ShardingSphere-Proxy is a
stateless application that is
best suited to being managed
on Kubernetes. As a stateful
application, your databases can
run on Kubernetes, any cloud, or
on-premise.

On the other hand,
ShardingSphere-Operator serves
as a manual operator working on
Kubernetes to offer availability
and auto-scaling features for

the ShardingSphere-Proxy
cluster. Users can scale-in or
scale-out ShardingSphere-
Proxy (computing nodes) and
Databases (storage nodes) as
needed. For example, some users
simply want more computing
power, and ShardingSphere-
Operator will automatically scale
out ShardingSphere-Proxy in
seconds. Others may discover
that they require more storage
capacity; in this case, they
simply need to spin up more
empty database instances and
execute a DistSQL command.
ShardingSphere-Proxy will
reshard the data across these old
and new databases to improve
capacity and performance.

Finally, ShardingSphere can
assist users in resolving the
issue of smoothly sharding
existing database clusters and
taking them into Kubernetes
in a more native manner.
Instead of focusing on how to
fundamentally break the current
database infrastructure and
seeking a new and suitable
distributed database that
can be managed efficiently
on Kubernetes as a stateful
application, why don’t we
consider this issue from the
other side. How can we make
this distributed database system
more stateless and leverage the
existing database clusters? Let
me show you two examples of
real-world scenarios.

Databases on Kubernetes
Consider that you have already
deployed databases, such as
MySQL and PostgreSQL, to
Kubernetes using Helm charts or
other methods and that you are
now only using ShardingSphere
charts to deploy ShardingSphere-
Proxy and ShardingSphere-
Operator clusters.

Once the computing nodes have
been deployed, we connect to
ShardingSphere-Proxy in the
original way to use DistSQL to
make Proxy aware of databases.
Finally, the distributed computing
nodes connect the storage nodes
to form the final distributed
database solution.

Databases on cloud or
on-premise
If you have databases on the
cloud or on-premises, the
deployment architecture will
be as shown in the image
below. The computing nodes,
ShardingSphere-Operator and
ShardingSphere-Proxy, are
running on Kubernetes, but your
databases, the storage nodes, are
located outside of Kubernetes.

Pros and Cons
We’ve seen a high-level
introduction to ShardingSphere
and some real-world examples of
deployment. Let me summarize
its pros and cons based on
these real-world cases and the
previous solution introduction to
help you decide whether to adopt
it based on your particular case.

The InfoQ
 eM

ag / Issue #109/ June 2023

20

Pros
• Leverage your existing

database capability

Instead of blowing up all your
legacy database architecture, it’s
a smooth and safe way to own a
distributed database system.

• Migrate efficiently and
steadily

With almost no downtime,
ShardingSphere offers a
migration process that allows
you to move and shard your
databases simultaneously.

• Traditional SQL-like approach
to harness it

ShardingSphere’s DistSQL
enables you to use the
distributed database system’s
features, such as sharding, data
encryption, traffic governance,
and so on, in a database native
manner, i.e., SQL Flexible auto-
scaling feature for separate
computing and storage power

You can scale-in or scale-out
ShardingSphere-Proxy and
Databases separately and flexibly
depending on your needs, thanks
to a non-aggressive computing-
storage splitting architecture.

• More cloud-native running
and governance way

ShardingSphere-Proxy is much
easier to manage and natively
deploy on Kubernetes because it
is essentially a type of stateless
global computing server that also
acts as a database server.

• Multi-cloud or cross-cloud

As stateful storage nodes,
databases can reside on
Kubernetes or on any cloud to
avoid a single cloud platform
lock-in. With ShardingSphere to
connect your nodes, you will get
a distributed database system.

• More necessary features
around databases

ShardingSphere is a database
ecosystem that provides data
encryption, authentication, read/
write splitting, SQL auditing,
and other useful features.
Users gradually discover their
advantages, regardless of
sharding.

• More clients for you to
choose from, or a hybrid one

ShardingSphere offers
two clients based on user
requirements: ShardingSphere-
Proxy and ShardingSphere-JDBC.
Generally, ShardingSphere-JDBC
has better performance than
ShardingSphere-Proxy, whereas
ShardingSphere-Proxy supports
all development languages
and Database management
capabilities. A hybrid architecture
with ShardingSphere-JDBC and
ShardingSphere-Proxy is also
a good way to reconcile their
capabilities.

• Open-source support

Apache ShardingSphere is one of
the Apache Foundation’s Top-
Level projects. It has been open-
sourced for over 5 years. As a
mature community, it is a high-
quality project with many user
cases, detailed documentation,
and strong community support.

Cons
• Distributed transactions

Even in a distributed database
system, the transaction is
critical. However, because

21

The InfoQ
 eM

ag / Issue #109/ June 2023

this tech architecture was not
developed from the storage
layer, it currently relies on the
XA protocol to coordinate the
transaction handling of various
data sources. It is not, however,
a perfect and comprehensive
distributed transaction solution.

• SQL-compatibility issue

Some SQL queries work well in a
storage node (database) but not
in this new distributed system.

This is a difficult issue to achieve
100% support, but thanks to the
open-source community, we’re
getting close.

• Consistent global backup

Although ShardingSphere
defines itself as a computing
database server, many users
prefer to think of it and their
databases as a distributed
database. As a result, people
must think about obtaining a
consistent global backup of this
distributed database system.
ShardingSphere is working on
such a feature, but it is not yet
supported (release 5.2.1). Users
may require manual or RDS
backups of these databases.

• Some overhead

Each request will be received
by ShardingSphere, calculated,
and forwarded to the storage
nodes. It is unavoidable that
the overhead for each query
will increase. This mechanism

happens in any distributed
database compared to a
monolithic one.

Hands-on
This section demonstrates
how to use ShardingSphere
and PostgreSQL RDS to build a
distributed PostgreSQL database
that will allow users to shard
data across two PostgreSQL
instances.

For this demonstration,
ShardingSphere-Proxy runs on
Kubernetes, and PostgreSQL RDS
runs on AWS. The deployment
architecture is depicted in the
following figure.

This demo will include the
following major sections:

• Deploy the ShardingSphere-
Proxy cluster and
ShardingSphere-Operator.

• Create a distributed database
and table using Distributed
SQL.

• Test the Scaling and HA of
the ShardingSphere-Proxy
cluster (computing nodes).

Prepare database RDS
We need to create two
PostgreSQL RDS instances on
AWS or any other cloud. They will
act as storage nodes.

Deploy ShardingSphere-Operator
1. Download the repo, and

create a namespace
named `sharding-test` on
Kubernetes.

The InfoQ
 eM

ag / Issue #109/ June 2023

22

git clone https://
github.com/apache/
shardingsphere-on-cloud
kubectl create ns
sharding-test
cd charts/shardingsphere-
operator
helm dependency build
cd ../
helm install shardingsphere-
operator shardingsphere-
operator -n sharding-test
cd shardingsphere-
operator-cluster
vim values.yaml
helm dependency build
cd ..
helm install shardingsphere-
cluster shardingsphere-
operator-cluster -n
sharding-test

2. Change `automaticScaling:
true` and `proxy-frontend-
database-protocol-type:
PostgreSQL` in values.yaml
of `shardingsphere-operator-
cluster` and deploy it.

3. Following these operations,
you will create a
ShardingSphere-Proxy cluster
containing 1 Proxy instance,
2 Operator instances, and 1
Proxy governance instance
showing as follows.

Create a sharding table by using
Distributed SQL
1. Login to ShardingSphere

Proxy and add PostgreSQL
instances to Proxy.

kubectl port-forward
--namespace sharding-
test svc/shardingsphere-
cluster-shardingsphere-
operator-cluster
3307:3307
psql --host 127.0.0.1 -U
root -p 3307 -d postgres

kubectl port-forward
--namespace sharding-
test svc/shardingsphere-
cluster-shardingsphere-
operator-cluster
3307:3307
psql --host 127.0.0.1 -U
root -p 3307 -d postgres

2. Execute DistSQL to create a
sharding table `t_user` with
MOD (user_id, 4), and show
the actual tables of this logic
table `t_user`.

3. Insert some test rows and do
a query on ShardingSphere-
Proxy to get the merged final
result.

4. Login to two PostgreSQL
instances to get their local
results.

This simple test will help you
understand that ShardingSphere
can help you manage and shard
your databases. People don’t
need to care about the separate
data in different shards.

Test the Scaling and HA of the
ShardingSphere-Proxy cluster
(computing nodes)

If you discover that the TPS
(transactions per second) or
QPS (queries per second) of this
new system are extremely high
and users complain that it takes
too long to open a webpage, it’s
time to upgrade your database
system’s computing power.

Compared to other
distributed database
systems, ShardingSphere-
Proxy is the simplest way to

increase computing nodes.
ShardingSphere-Operator can
ensure ShardingSphere-Proxy
availability and autoscale
them based on CPU metrics.
Furthermore, by modifying its
specifications, it is possible to
make it scale-in or scale-out, just
as follows:

You will receive two
ShardingSphere-Proxy instances
after upgrading the release.
This implies that you have more
computing power.

If, as mentioned above, you
require more storage capacity,
you can take the following steps.

Launch additional PostgreSQL
instances in the cloud or
on-premises.

Add these new storage nodes to
the ShardingSphere-Proxy.

Run distributed SQL to allow
ShardingSphere to assist you
with resharding.

Wrap-up
The focus of this article is a new
sharding database architecture
on Kubernetes that leverages
your existing monolithic
databases, allowing the DevOps
team to evolve their database
infrastructure to a modern one
efficiently and fluently.

The database computing-storage
split is a vintage architecture

23

The InfoQ
 eM

ag / Issue #109/ June 2023

that is re-interpreted and fully
leveraged on Kubernetes today
to help users address the
governance issue of the stateful
database on Kubernetes.

These days, distributed
databases, cloud computing,
open source, big data, and
modern digital transformation
are common buzzwords. But they
represent useful new concepts,
ideas, and solutions that address
production concerns and needs.
As I always recommend to
our end-users, look forward to
welcoming new ideas, learning
their pros and cons, and then
choosing the best one for your
specific situation, as there is no
such thing as a perfect solution.

The InfoQ
 eM

ag / Issue #109/ June 2023

24

Design Pattern Proposal for Autoscaling
Stateful Systems
by Rogerio Robetti, Software Engineer

Considering the trend in software
engineering for segregation
and the ever-growing need for
scalability, a common challenge
arose where autoscaling stateful
systems (databases being most
common) became complex and,
at times, unfeasible. That has led
to many companies choosing to
over-provision such systems so
that, based on expected loads,
the systems can cope with the
highest expected demands.

This, of course, brings problems
as over-provisioning resources
is costly. It does not guarantee
reliability, as sudden surges of
demand or a DOS attack can

easily compromise the expected
loads. This article aims to dig
deeper into the challenges faced
when attempting to auto-scale
stateful systems and proposes
an opinionated design solution
on how to address many of those
challenges through a mix of
existing and novel approaches.

Recapitulating a Little
If we look at how software
engineering evolved historically,
we see a few significant
milestones in terms of building
software and the restrictions and
expectations of users.

Suppose we took a concise,
historical tour of software
engineering. We would start
with the mainframes and their
centralized approach with
large servers, pass by the
desktop applications, including
the Client-Server advent. We
would then move into the web
applications revolution and
the multiple phases within it,
from large monoliths to modern
microservices.

In all that history, we would see
clear trends for segregation.
Vertical segregation is where we
divide systems by concerns (or
context), generally having the

https://www.infoq.com/articles/kafka-clusters-cloudflare/
https://en.wikipedia.org/wiki/Mainframe_computer
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Microservices

25

The InfoQ
 eM

ag / Issue #109/ June 2023

database(s) separated from our
applications and in many cases
having our UI separated from our
business or service layer. And
there is horizontal segregation,
where the systems can be scaled
out by provisioning more nodes
to support rising demands, even
automatically, with the help of
tools like an orchestrator such as
Kubernetes.

This segregation hunger led to
the inception of architectural
approaches like the shared-
nothing architecture in which an
application is built to not hold
state in itself, becoming what we
know as a stateless application
and making it a lot simpler to
scale out. That sounds like an
awesome solution, but soon,
engineers realized that there
is seldom a “truly stateless”
application—one that doesn’t
hold state at all.

What happens instead is that
parts of the application (usually
the services or microservices) are
built stateless. However, they still
rely on stateful systems such as
databases to hold state on their
behalf. This is the central theme
of this article. I will discuss this
common challenge in software
engineering, how to efficiently
auto-scale stateful systems in
modern applications?

Targeted Use Cases
This article does not target
stateful systems that hold state
in web servers.

It provides a foundational
design upon which software
engineers can potentially build
their own databases, explicitly
addressing the concerns of
getting a storage system that
works in a single node and
turning it into a distributed
system with opinionated
autoscaling capabilities. For
example: Imagine a microservice
architecture for online ordering,
like the diagram in Figure 1.

Let’s say there are requirements
that lead to the conclusion
that using RocksDB as a key
value storage engine for your
project requirements is better
than Redis. The trouble is that
RocksDB is only a storage
engine—it can only be deployed
in one node as is. Let’s assume
your requirements are for a new
system that will have a global
outreach and require significant
extensibility. This article is a
good start on how you can go
about transforming a single-node
storage engine like RocksDB into
a distributed and auto-scalable
application.

Note that RocksDB is just an
example here. It could be any
other storage engine or tool
like Apache Lucene for text
indexation or just in-memory
storage without any engine, for
that matter. This design pattern
is generic and can apply to any
storage engine, language, and
data type and structure. Also,
the designs shared here could
be used to give autoscaling
capabilities to any of the

databases listed (Mongo, Redis,
Postgres).

Stateful System Definition
A stateful system is a system
where state must be handled. In
modern web applications, the job
of holding and managing state
is typically done by a database,
but it can also be a web server,
for instance, when user sessions
are stored in the web server’s
memory.

In websites, a typical example
of state to be managed is a
user’s shopping cart (see Figure
1). The cart has to be saved
between HTTP requests so that

Figure 1: Online shopping example use case

https://kubernetes.io/docs/concepts/overview/
https://en.wikipedia.org/wiki/Shared-nothing_architecture
https://en.wikipedia.org/wiki/Shared-nothing_architecture
http://rocksdb.org/
https://lucene.apache.org/

The InfoQ
 eM

ag / Issue #109/ June 2023

26

when the user finishes shopping
and proceeds to checkout and
payment, the cart is in the correct
state with the right products and
amounts. The cart information
has to be stored somewhere,
and that somewhere is a stateful
system. In our use case example
in Figure 1, the Mongo DB cluster,
Redis cluster, and Postgres
cluster are the stateful systems.

Autoscaling—The Problems
When we start thinking about
autoscaling stateful systems,
the main concerns that come to
mind are “When should we scale?
What should be the trigger? How
should this scale take place?
How will we move the data?
How will the nodes achieve
consensus?”

Here are the main problems I will
cover in this article:

Consensus
Every distributed system that
holds state has to agree on the
next valid state of the cluster.
This is a well-researched area
that we can refer to, we can
take as examples Ark, Raft, and
BDR, which are the consensus
algorithms used by MongoDB,
Redis, and Postgres, respectively.
These are the databases picked
for our example of online
ordering presented before in
Figure 1.

The need for consensus arises in
software applications every time
a cluster must agree on the next
value of a record stored, being

the most notorious use cases
of database implementations.
In this article, I will propose
something new to make Raft
consensus smarter when
selecting a new leader.

Autoscaling
In stateful systems, even though
there is an increase in the
offerings of systems that can
auto-scale (managed instances
of databases in cloud providers,
for example), in practice, we see
a struggle within companies
to be able to implement such
scenarios, which appear to be
caused by:

• Lack of transparency: When
we look at mainstream cloud
providers like AWS and Azure
it is easy enough to configure
autoscaling, but it is not
disclosed how exactly the
autoscaling will happen, and
knowing exactly how it works
is vital for critical scenarios
with large datasets—
questions like “When is the
data moved? What is the
strategy?” These should be
clearly stated on the product
offerings.

• Inexistence of public patterns
to autoscaling: no publicly
available patterns currently
exist on how to auto-scale
stateful systems.

Data migration lag
A common way of scaling a
system is adding new nodes to
the cluster. However, when we
talk about stateful clusters, time

is needed to achieve synchrony
with all the data already held by
the other nodes—in some cases,
these amounts can be massive.

Let’s take our online shopping
example (Figure 1). If we talk
about large organizations that
operate in many geographical
areas, the number of records
can reach billions. At this scale,
a clear and efficient approach to
synchronizing and moving data
is paramount.

Fast vs. slow demand increase
There are two instances where
more capacity is required:

1. A steady, medium- to long-
term gradual increase in
demand. In our ordering
example, this would be the
numbers of consumers
growing consistently over a
period of time.

2. A sudden surge in demand
that may not be predictable
and may risk the service
becoming unavailable, which
happens when the system
is under a DoS attack, for
instance.

Closed solutions
There needs to be more publicly
available design patterns for the
listed problems above. It is not a
good idea to simply believe that
the cloud provider’s approach will
work; even if it does, you may find
yourself locked to that particular
provider, which is not ideal.

https://www.infoq.com/news/2014/08/ark-mongodb/
https://github.com/RedisLabs/redisraft
https://www.enterprisedb.com/docs/pgd/latest/bdr/
https://www.mongodb.com/home
https://redis.io/
https://www.postgresql.org/
https://aws.amazon.com/
https://azure.microsoft.com/en-us/

27

The InfoQ
 eM

ag / Issue #109/ June 2023

The Vision
My vision is a public proposal for
a generic, replicable, opinionated
approach for autoscaling stateful
systems aiming to automatically
scale up (vertical) and scale out
(horizontal) from a single node
up to hundreds or thousands of
nodes in a single cluster with
minimum configuration and
interference of the operator. The
solutions presented in this article
are theoretical at this stage and
require implementation and
testing.

Core Principles
Data-type agnostic
The designs are not bound
to any specific data types; in
other words, you can use the
same solutions to handle JSON
objects, serialized data, streams,
blobs, or other types of data.

The Writer writes and the Reader
reads!
The cluster leader responsible
for writing new states only does
the write operations—it does not
perform reads. Read replicas, on
the other hand, do all the read
operations and never do writes.

Proxy as part of the cluster
You must have a proxy
implementation that does not
serve reads nor writes as part
of the stateful cluster; this
enables the cluster to use this
proxy as a node that also slowly
synchronizes the data of the
cluster, eventually becoming
ready to serve read or write
requests if required.

Trigger autoscaling by average
response time
Most autoscaling approaches
used by cloud providers use CPU
and memory thresholds, but that
is not the best way to deliver
the best client experience. Even
though the resources may be
under stress at certain times,
it does not necessarily mean
that the user is feeling it on the
other end; the system may be
using 99% of CPU and delivering
requests in good time.

Using average response time
as the primary trigger changes
the decision-making on when
to scale, taking the client’s
perspective of the system’s
performance.

A priory sharding labeling
Labeling each object/record
stored with a shard ID avoids
the costs of doing it when the
pressure is higher on the system
so that whenever you need to
start sharding, the labels are
already set, and no intervention is
required.

Here we go… The designs
In this proposal for autoscaling
stateful systems, there are three
different actors. Each actor will
have specific responsibilities in
the cluster. It is worth pointing
out that each actor proposed
does not necessarily need to
be running in its own process
or node, and that has much to
do with the ability to run the
system in a single node, which
raises concerns for production

purposes. Still, it is paramount
for testing, POC, or even some
MVP setups.

Without further ado, let’s
look at each actor and its
responsibilities.

Writer (Leader)
The Writer (or leader) is the actor
responsible for taking care of the
write operations. It writes the
new state in its own storage and
is responsible for replicating the
data to the Read Replica actor(s).
There is only one Writer per shard
(I will elaborate more on sharding
later).

The Writer is the leader of a
consensus, and all the write
operations are executed through
it. No read operations are
executed through the Writer.

Read Replica
The Read Replica is the actor
that serves all the read requests.
It contains a replica of the data
from the Writer (leader), except
when both Writer and Reader are
running in a single node/process,
in which case they can share the
same storage.

When the consensus protocol
elects a new leader, each Read
Replica is responsible for
opening a multiplex pipe of
communication with the leader
that remains open until one of
the nodes dies or the connection
is broken by a network partition.
This is important to speed up
communication between the

The InfoQ
 eM

ag / Issue #109/ June 2023

28

actors/nodes by avoiding the
overhead of opening and closing
connections.

Load Manager
The Load Manager actor serves
as a gateway and load balancer,
sending write requests to the
leader and read requests to
the replicas. It is also a back
pressure mechanism that can
accept thousands of inbound
connections. Still, it maintains
the number of parallel threads
against the target (Read
Replica or Writer) limited to a
configurable number, therefore
keeping the pressure on these
actors controlled. The Apache
Tomcat Nio Connector inspires
this. And it is vital to defend the
cluster against sudden increases
in loads or DOS attacks, in
which case the pressure will be
absorbed by the Load Manager,
keeping the read and write actors
safe and receiving a steady flow
of requests.

The Load Manager is also
responsible for routing write
requests to the correct shard
and sending query requests to
each shard when aggregation is
required. It also aggregates and
sorts the results before returning
them to the client, reducing the
amount of work required from the
Read Replica. The Load Manager
addresses these concerns in
the same manner as a database
proxy would, with the difference
that it is part of the cluster and
not an external added component
in this case.

There can be more than one
instance of the Load Manager.
Every time the Load Manager
instance(s) reach a configurable
threshold of CPU and/or
memory, a new Load Manager is
provisioned, generating a cluster
of Load Managers that should
have their own independent
consensus mechanism.

High-Level Design
The basic interaction between
the actors proposed in this
design pattern is expressed in
the diagram presented in Figure
2:

Why Raft?
Raft is a well-known and battle-
tested consensus algorithm
sometimes comparable to Paxos
in performance but a lot simpler,
as explained in this Paper review:
Raft vs. Paxos.

The fact that Raft only has one
leader at a given time is very
important for the strategies I will
describe here.

Smart Raft
I propose modifying the Raft
protocol to increase the overall
performance of the cluster by
making Raft aware of node
differences and selecting the
“bigger” node available as
a leader. This is especially
important when talking about
autoscaling write operations,
as we only have one leader at a
given time. The most obvious
way to increase its capabilities is
to provision a “bigger” leader and
therefore trigger a new election.
Raft then needs to be able to
identify and elect the new

“bigger” node as leader.

An alternative approach is to
modify Raft to be able to receive
a “switch to” instruction which
would cause the cluster to
switch the leader to the specified
“bigger” node.

The latter approach is preferred,
as it would be a smaller change
to protocol and would decouple
the task of switching the leader
from the switch logic.

Figure 2: Basic design of the proposed solution

https://whatismyipaddress.com/gateway
https://en.wikipedia.org/wiki/Load_balancing_(computing)
https://medium.com/@jayphelps/backpressure-explained-the-flow-of-data-through-software-2350b3e77ce7
https://medium.com/@jayphelps/backpressure-explained-the-flow-of-data-through-software-2350b3e77ce7
https://dzone.com/articles/understanding-tomcat-nio
https://dzone.com/articles/understanding-tomcat-nio
https://www.programmingbrain.com/2022/11/what-is-database-proxy.html
https://www.programmingbrain.com/2022/11/what-is-database-proxy.html
https://raft.github.io/
https://martinfowler.com/articles/patterns-of-distributed-systems/paxos.html
https://emptysqua.re/blog/paxos-vs-raft/
https://emptysqua.re/blog/paxos-vs-raft/

29

The InfoQ
 eM

ag / Issue #109/ June 2023

Bigger in this context is related
to CPU, memory, storage
technology (SSD), or other
resources—it all depends on the
purpose of the stateful cluster. If
the cluster is intended to serve
complex calculations, bigger
probably means more CPU, but if
it serves requests, it might mean
more memory and better storage
technology.

Autoscaling Strategy
The phases of scalability that I
explain next are named Mach*
in an allusion to the speed term
used to describe objects as
fast or faster than the speed of
sound. In this article, each Mach
stage effectively implies the
cluster’s number of nodes.

*Mach terminology is only
used in this article—it is not an
industry naming convention.

Configurable Scaling Triggers
It is important to understand
when is the right time to auto-
scale/auto-descale. For instance,
it is a bad idea to attempt to
scale when the system is under
a lot of pressure, and that is why
the back pressure offered by
the Load Manager actor is so
significant.

I will focus on scenarios where
the increase in demand happens
gradually over time. For that,
there are two essential types of
configurations that can be used
to trigger autoscaling.

In both scenarios, it is the
responsibility of the Load
Manager to recognize that a
trigger should happen and emit
a notification to the operator.
(Note: the operator may be a
human or a software system,
preferably the latter.)

The configurable triggers are:

1. By average response time
threshold
One of the jobs of the Load
Manager is to monitor the
average response time of
requests. When the average
response time of requests
reaches a threshold, a trigger for
scale is issued.

Example of scaling UP
configuration: 3 seconds/request
on average in the last 60 min.

Example of scaling DOWN
configuration: < 0.5 seconds/
request on average in the last 60
min.

2. By timeout threshold
The timeout threshold is a
percentage of requests that may
time out within a given period of
time before an auto-scale signal
is issued.

Example of scaling UP
configuration: > 1% of requests
timed out in the last 5 min.

Example of scaling DOWN
configuration: Not recommended
for timeout threshold as no
level of timeouts is advisable to

be safe for a downgrade in the
cluster.

Refer back to Figure 1, and
assume that we have replaced
Redis with our auto-scalable
RocksDB. The new RocksDB
auto-scalable cluster would
scale up and down based on
these thresholds being breached
without any interference of the
human operator/admin.

Notes before continuing reading:

• The following examples for
each Mach stage focus on
increasing read capabilities,
which will indirectly increase
write capabilities as per
the following workload
segregation. To scale
targeted write capacity,
a special section will be
dedicated after Mach IV.

• A “Node” in this text means
a participant in the cluster
and an individual process
running—it does not
necessarily indicate different
hardware.

• The total number of replicas
to be provisioned before
starting to create shards has
to be configurable.

• The cluster can start in
any desired setup, being
Mach IV the minimum setup
recommended for production
purposes.

• All three actors’ (Writer, Read
Replica, and Load Manager)
implementations are modular

https://en.wikipedia.org/wiki/Solid-state_drive

The InfoQ
 eM

ag / Issue #109/ June 2023

30

and always deployed in
the nodes. When a node is
labeled as Writer, for example,
it means that only the Writer
module is enabled on it, but
it still contains the disabled
modules of Read Replica
and Load Manager, which is
what allows nodes to switch
responsibilities if needed.

Mach I
This is the initial state of the
system/cluster; all its actors
are active in a single node, it is
indicated for small use cases or
testing pipeline scenarios, and it
looks like the diagram in Figure 3.

In Mach I, all components are
deployed as a single process in a
single node. This single node is
responsible for managing all the
read and write requests.

Use case: Mostly recommended
for testing scenarios—not ideal
for production.

Consensus and replication
At Mach I, no consensus or
replication is required as the
components communicate in
memory module to the module.

Mach II
In Mach II, the cluster counts with
two nodes deployed—the second
node on a scale out is always a
Load Manager. That is to ensure
back pressure protection on the
node responding to the requests
and to allow the new node to
gradually synchronize the data.

Figure 3: Single node deployment—Mach I.

Figure 4: Two-node deployment—Mach II.

Figure 5: Three-node deployment—Mach III.

Figure 6: Four-node deployment—Mach IV.

31

The InfoQ
 eM

ag / Issue #109/ June 2023

The topology is represented in
the diagram in Figure 4.

Consensus and replication
At Mach II, consensus is not
required as it is impossible to
establish Raft consensus with
less than three nodes.

Replication will happen from the
Read Replica module deployed
on node two to the Read Replica
module that also runs in Node
2 alongside the Load Manager.
The point to be noted is that
the Read Replica in Node 2
(the Load Manager node) does
not serve requests; this design
decision is to always have a node
“nearly” synchronized, which can
enter in operation as an extra
Read Replica or a leader node
extremely fast, as I will explain in
Mach III.

Use case: Can be used in
scenarios where reliability is not
so important and low operational
costs are.

Mach III
Mach III indicates that an extra
node has been added to the
cluster, which now has three
nodes in total.

The new node will always
enter the cluster as a new
Load Manager, the clients will
be redirected to the new Load
Manager, and the Load Manager
provisioned in Mach II takes the
role of a Read Replica.

The diagram in Figure 5
represents the Mach III scenario.

Consensus and replication
No consensus is required yet
because besides having three
nodes, only Node 1 and 2 can
actively serve requests.

Use case: Already offers a good
performance by separating read
and write operations in different
nodes. However, if a node fails
due to the lack of a second Read
Replica node, this would force
the Writer to start serving read
requests until a new node is
provisioned.

Resiliency strategy
Leader crashes: The cluster
returns to Mach II topology with
Node 2 assuming the write and
read operations until a new node
is added to the cluster.

Node 2 (Read Replica) goes
down: The Leader/Writer starts
serving read requests until a new
node is added back to the cluster.

Node 3 (Load Manager) goes
down: Node 2 will start operating
as Load Manager and no longer
as Read Replica, and Node 1
will perform the write and read
operations.

In all three scenarios, a signal is
sent to the operator requesting
the provisioning of a new node
to replace the fallen one, and
the new node always enters the
cluster as a Load Manager.

Mach IV
At this stage, there are four
nodes in the cluster, and there
is a second Read Replica. The
deployment will look like the
diagram in Figure 6:

Use case: Minimum setup
indicated for production
workloads, good performance,
and good response in case of a
failing node.

Consensus and replication
At Mach IV, consensus is
introduced, but no election is
held initially. Node 1 will remain
as leader and centralize the write
operations not to waste time
switching to a new leader. It is
vital that the Raft implementation
is extended to support this
arrangement. It is also crucial
that if the leader goes down,
Node 2 or 3 becomes the new
leader, reverting to Mach III
topology. The Load Manager is
responsible for making such a
decision.

Leader crashes: Raft protocol
can’t have an election with only
two nodes remaining in the
cluster, so the Load Manager
will randomly pick a new leader
between Nodes 2 and 3 that
contain a Read Replica running.

From Mach IV, the resiliency
strategy for Replicas and Load
Manager nodes is the same as
Mach III, and new replica nodes
can be added to the cluster to a
configurable max number before
shards are created.

The InfoQ
 eM

ag / Issue #109/ June 2023

32

Mach V, VI, and so on…
New Read Replicas keep being
added to the cluster until a
configured max number where
sharding starts to take place.
Note that adding Replicas means
always adding a new Load
Manager and taking the place
of the previous Load Manager.
The previous Load Manager then
joins the Raft consensus and
starts serving read requests.

Use case: As the cluster grows
larger, it becomes more reliable
since the failure of one node is
not as dramatic as in smaller
setups.

Resiliency strategy
Leader crashes: Raft elects a
new leader among the Read
Replicas available, and the new
leader communicates to the Load
Manager of its election.

Read Replica crashes: A new
node is requested to be added to
the cluster.

Load Manager crashes: The
latest Read Replica added to
the cluster assumes the Load
Manager responsibilities, no
longer serving read requests
itself until a new node is
provisioned, and as always, it
enters the cluster as a Load
Manager.

Read Intensive vs. Write
Intensive Scenarios
Until Mach IV, the autoscaling
neglects the characteristics
of the load to the detriment of

having what is considered the
minimum replication setup for
a reliable system. The system
will continue to auto-scale,
but now differently. It will now
consider if the usual load is Read
Intensive (80% or more reads),
Write Intensive (80% or more
write operations), or balanced
(all other scenarios). This may
not account for exceptional use
cases but remember that this is
an opinionated pattern and that,
if necessary, it can be adapted
for special circumstances. The
target here is to address most of
the use cases—not all.

Scaling Read Intensive scenarios
This requires the simplest
strategy where new nodes keep
being added in the same manner
as Mach I to Mach VII, which
represents seven nodes (1 Read
Manager, 1 Leader Writer, and 5
Read Replicas) where the cluster
will then start using shard labels
(more on it soon) to create
shards of the existing data and
divide the load of incoming

requests between the newly
created shards.

Before it operates in two shards,
a new node is added to the
cluster to support the topology
introduced in Figure 7, with a
minimum of eight nodes.

Use case: Large-scale scenarios
with ever-growing demands.

The diagram in Figure 7
represents a setup with two
shards, each shard containing
one leader and two Read
Replicas, plus an extra replica in
a Load Manager node.

This can be further scaled into
a third or fourth shard when
enough nodes are provisioned in
each shard. For example, if Shard
2 scales to seven nodes, the next
step is to add a new node and
divide it into two shards.

Each Load Manager holds a
replica of only one shard, and
that is the shard the Load

Figure 7: Sharding topology example for two shards.

33

The InfoQ
 eM

ag / Issue #109/ June 2023

Manager can assume the read
or writer role if needed, but to
be able to fulfill requests from
clients, it needs to write and read
from all shards.

Scaling Write Intensive scenarios
For the scenarios where write
operations are the focus or where
sensible degradation is observed
on write operations, there are
two ways to scale the writing
capacity of the cluster:

1. Provision of a bigger leader

The first approach is to provision
a bigger node (memory, and/
or CPU, and/or read/write
storage speed) than the current
leader. This node will initially
be provisioned as the Load
Manager (as always) and will
remain as Lead Manager until
it synchronizes with the current
leader exactly like in the Mach
transitions explained earlier.
Once synchronized, it starts
a new election and becomes
the new leader of the Raft
consensus, switching places with
the old leader. Each node in the
cluster has specification levels
labeled from 1 to 5, where 1 is
the lowest level of specification
(smaller resources), and 5 is the
highest (bigger resources).

2. Sharding

Once scaling vertically has
reached its limit (node level 5),
sharding begins. A new leader
will be provisioned as Read
Replica that will first synchronize

only the shard it will take over
from the current leader and then
will become the leader itself only
for that shard of the data. The
level of the new node added (1 to
5) has to be configurable.

This is a different trigger for
sharding than the Read Intensive
scenario described before. Read
Intensive sharding is triggered
based on horizontal scale
(number of nodes). For Write
Intensive scenarios, sharding is
triggered based on vertical scale;
in other words, the size of the
leader reached the maximum
possible (5).

It is also possible to specify
that when the new shard is
provisioned, both leaders are of
a certain level, for instance, level
3. This is important because two
level 3s make a “level 6” Writer
capable cluster, but this should
also be configurable. In this
scenario, the previous level 5
Writer node would be replaced by
two level 3 nodes, one for each
shard.

A priority labeling for sharding
strategy
The problem: Figuring out how
to separate information into
shards efficiently is no easy task,
especially if the data is large and
complex.

A simple solution: Every time
a record/object is stored in the
cluster, a bucket ID in a range
from 1 to 1000 is assigned to it.
This bucket ID is random and

guarantees that, at a large scale,
each bucket will have a similar
number of objects assigned to it,
balancing the shards.

For instance, for two shards,
the first shard will have objects
allocated in the buckets from
1 to 500 inclusive, and the
second shard will have objects
allocated in the buckets 501 to
1000 inclusive, considering that
the total number of buckets was
defined to be 1000.

This splitting buckets per shard
process will be repeated every
time a new shard is required. This
means that, for this example,
the maximum number of shards
is 1000, which is probably
unrealistically high for most
scenarios.

Conclusion and Future Work
By no means do I believe
this article addresses all the
nuances of autoscaling a stateful
system but instead offers a
template and a pattern based
on many techniques I have used
separately during my career, now
put into a single standard that
can be used as a foundation for
stateful autonomous scalability
implementations. These designs
may not be the best fit for
scenarios where the majority
of the read operations have to
be executed against many or
all shards. In such scenarios, a
better shard bucket definition is
advisable to attempt to have all
the data needed in a single shard
or in as few shards as possible.

https://www.geeksforgeeks.org/what-is-sharding/

The InfoQ
 eM

ag / Issue #109/ June 2023

34

DynamoDB Data Transformation Safety: from
Manual Toil to Automated and Open Source
by Guy Braunstain, Full Stack Developer

When designing a product to be
a self-serve developer tool, there
are often constraints - but likely
one of the most common ones is
scale. Ensuring our product, Jit -
a security-as-code SaaS
platform, was built for scale was
not something we could embed
as an afterthought, it needed to
be designed and handled from
the very first line of code.

We wanted to focus on
developing our application and
its user experience, without
having challenges with issues
and scale be a constant
struggle for our engineers. After
researching the infrastructure
that would enable this for

our team - we decided to
use AWS with a serverless-based
architecture.

AWS Lambda is becoming an
ever-popular choice for fast-
growing SaaS systems, as it
provides a lot of benefits for
scale and performance out of
the box through its suite of
tools, and namely the database
that supports these systems,
AWS’s DynamoDB.

One of its key benefits is
that it is already part of
the AWS ecosystem, and
therefore this abstracts many
of the operational tasks of
management and maintenance,

such as maintaining connections
with the database, and it requires
minimal setup to get started in
AWS environments.

As a fast-growing SaaS
operation, we need to evolve
quickly based on user and
customer feedback and embed
this within our product. Many
of these changes in application
design have a direct impact on
data structures and schemas.

With rapid and oftentimes
significant changes in the
application design and
architecture, we found
ourselves needing to make data
transformations in DynamoDB

https://www.infoq.com/articles/dynamoDB-data-transformation-safety/
https://www.jit.io/
https://aws.amazon.com/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html

35

The InfoQ
 eM

ag / Issue #109/ June 2023

very often, and of course, with
existing users, it was a priority
that this be achieved with zero
downtime. (In the context of this
article Data Transformation will
refer to modifying data from state
A to state B).

Challenges with Data
Transformation
In the spirit of Brendon Moreno
from the UFC:

Maybe not today, maybe not
tomorrow, and maybe not next
month, but only one thing is
true, you will need to make
data transformations one day, I
promise.

Yet, while data transformation is
a known constant in engineering
and data engineering, it remains
a pain point and challenge to
do seamlessly. Currently, in
DynamoDB, there is no easy
way to do it programmatically
in a managed way, surprisingly
enough.

While there are many forms
of data transformation, from
replacing an existing item’s
primary key to adding/removing
attributes, updating existing
indexes - and the list goes
on (these types are just a few
examples), there remains no
simple way to perform any
of these in a managed and
reproducible manner, without
just using breakable or one-off
scripting.

User Table Data Transform
Example

Below, we are going to dive into
a real-world example of a data
transformation process with
production data.

Let’s take the example of
splitting a “full name” field into
its components “first name”
and “last name”. As you can see
in the example below, the data
aggregation currently writes
names in the table with a “full
name” attribute. But let’s say
we want to transform from a full
name, and split this field into first
and last name fields.

Looks easy, right? Not so, to
achieve just this simple change
these are the steps that will
need to be performed on the
business logic side, in order to
successfully transform this data.

• Scanning the user records

• Extracting the FullName
attribute from each record

• Splitting the FullName
attribute into new FirstName
and LastName attributes

• Saving the new records

• Cleaning up the FullName
attribute

But let’s discuss some of the
issues you would need to take
into account before you even
get started, such as - how do
you run and manage these
transformations in different
application environments?
Particularly when it’s not really
considered a security best
practice to have access to each
environment. In addition, you
need to think about service
dependencies. For example,
what should you do when you
have another service dependent
on this specific data format?

Your service needs to be
backward compatible and still
provide the same interface to
external services relying on it.

When you have production
clients, possibly one of the most
critical questions you need to
ask yourself before you modify
one line of code is how do you
ensure that zero downtime will be
maintained?

Some of the things you’d need to
plan for to avoid any downtime

The InfoQ
 eM

ag / Issue #109/ June 2023

36

is around testing and verification. How do you even
test your data transformation script? What are
some good practices for running a reliable dry run
of a data transformation on production data?

There are so many things to consider before
transforming data.

Now think that this is usually, for the most part,
done manually. What an error-prone, tedious
process! It looks like we need a fine-grained
process that will prevent mistakes and help us to
manage all of these steps.

To avoid this, we understood we’d need to define a
process that would help us tackle the challenges
above.

The Rewrite Process

Figure 1: Rewrite Process Flow Chart

First, we started by adjusting the backend code to
write the new data format to the database while
still keeping the old format, by first writing the
FullName, FirstName and LastName to provide us
some reassurance of backward compatibility. This
would enable us to have the ability to revert to the
previous format if something goes terribly wrong.

async function createUser(item) {
 // FullName = ‘Guy Br’
 // ‘Guy Br’.split(‘ ‘) === [‘Guy’,
‘Br’]
 // Just for the example assume that
the FullName has one space between first
and last name
 const [FirstName, LastName] = item.
FullName.split(‘ ‘);

 const newItemFormat = { ...item,
FirstName, LastName };
 return dynamodbClient.put({
 TableName: ‘Users’,
 Item: newItemFormat,
 }).promise();
};

Link to GitHub

Next, we wrote a data transformation script that
scans the old records and appends the FirstName
and LastName attributes to each of them, see the
example below:

async function
appendFirstAndLastNameTransformation()
{
 let lastEvalKey;
 let scannedAllItems = false;

 while (!scannedAllItems) {
 const { Items, LastEvaluatedKey } =
await dynamodbClient.scan({ TableName:
‘Users’ }).promise();
 lastEvalKey = LastEvaluatedKey;

 const updatedItems = Items.
map((item) => {
 const [FirstName, LastName] =
splitFullNameIntoFirstAndLast(item.
FullName);
 const newItemFormat = { ...item,
FirstName, LastName };
 return newItemFormat;
 });

 await Promise.all(updatedItems.
map(async (item) => {
 return dynamodbClient.put({
 TableName: ‘Users’,
 Item: item,
 }).promise();
 }));

 scannedAllItems = !lastEvalKey;
 };
}

Link to GitHub

After writing the actual script (which is the easy
part), we now needed to verify that it actually does
what it’s supposed to. To do so, the next step

http://gist.github.com/Guy7B/070701d73964987733a12cee422fc4da.js
https://gist.github.com/Guy7B/fe2154630dfce753ac28c0ddb8c185c1.js

37

The InfoQ
 eM

ag / Issue #109/ June 2023

was to run this script on a test environment and
make sure it works as expected. Only after the
scripts usability is confirmed, it could be run on the
application environments.

The last phase is the cleanup, this includes taking
the plunge and ultimately deleting the FullName
column entirely from our database attributes. This
is done in order to purge the old data format which
is not used anymore, and reduce clutter and any
future misuse of the data format.

async function cleanup() {
 let lastEvalKey;
 let scannedAllItems = false;

 while (!scannedAllItems) {
 const { Items, LastEvaluatedKey } =
await dynamodbClient.scan({ TableName:
‘Users’ }).promise();
 lastEvalKey = LastEvaluatedKey;

 const updatedItems = Items.
map((item) => {
 delete item.FullName;
 return item;
 });

 await Promise.all(updatedItems.
map(async (item) => {
 return dynamodbClient.put({
 TableName: ‘Users’,
 Item: item,
 }).promise();
 }));

 scannedAllItems = !lastEvalKey;
 };
 };

Link to GitHub

Lets quickly recap what we have done in the
process:

• Adjusted the backend code to write in the new
data format

• Created a data transformation script that
updates each record

• Validated that script against a testing
environment

• Ran the script on the application environments

• Cleaned up the old data

This well-defined process helped us to build
much-needed safety and guardrails into our data
transformation process. As we mentioned before,
with this process we were able to avoid downtime
by keeping the old format of the records until we
don’t need them anymore. This provided us with a
good basis and framework for more complex data
transformations.

Transforming Existing Global Secondary Index
(GSI) using an External Resource
Now that we have a process––let’s be honest, real-
world data transformations are hardly so simple.
Let’s assume, a more likely scenario, that the data
is actually ingested from an external resource, such
as the GitHub API, and that our more advanced
data transformation scenario actually requires us
to ingest data from multiple sources.

Let’s take a look at the example below for how this
could work.

In the following table, the GSI partition key is by
GithubUserId.

For the sake of this data transformation example,
we want to add a “GithubUsername” column to our
existing table.

https://gist.github.com/Guy7B/e56e170bba337f02e3dc91c3241c8430.js
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSI.html
https://docs.github.com/en/developers/overview/about-githubs-apis

The InfoQ
 eM

ag / Issue #109/ June 2023

38

This data transformation looks seemingly as
straightforward as the example with the full name,
but there is a little twist.

How can we get the Github username if we don’t
have this information? We have to use an external
resource, in this case, it’s the Github API.

GitHub has a simple API for extracting this data (you
can read the documentation here). We will pass the
GithubUserId and get information about the user which
contains the Username field that we want.

https://api.github.com/user/:id

The naive flow is similar to the full name example
above:

• Adjust our code to write in the new data format.

• Assume that we have the Github username
when creating a user.

• Scan the user records (get `GithubUsername`
by `GithubUserId` for each record using Github
API), and update the record.

• Run that script on the testing environment

• Run it on the application environments

However, in contrast to our previous flow, there
is an issue with this naive flow. The flow above
is not safe enough. What happens if you have
issues while running the data transformation when
calling the external resource? Perhaps the external
resource will crash / be blocked by your IP or is
simply unavailable for any other reason? In this
case, you might end up with production errors or
a partial transformation, or other issues with your
production data.

What can we do on our end to make this process
safer?

While you can always resume the script if an
error occurs or try to handle errors in the script

itself, however, it is important to have the ability
to perform a dry run with the prepared data from
the external resource before running the script on
production. A good way to provide greater safety
measures is by preparing the data in advance.

Below is the design of the safer flow:

Adjust our code to write in the new data format
(create a user with GithubUsername field)

Create the preparation data for the transformation

Only after we do this, we scan the user records, get
GithubUsername for each of them using Github
API, append it to a JSON Object `{ [GithubUserId]:
GithubUsername }` and then write that JSON to a
file.

This is what such a flow would look like:

async function
prepareGithubUsernamesData() {
 let lastEvalKey;
 let scannedAllItems = false;

 while (!scannedAllItems) {
 const { Items, LastEvaluatedKey } =
await dynamodbClient.scan({ TableName:
‘Users’ }).promise();
 lastEvalKey = LastEvaluatedKey;

 const currentIdNameMappings = await
Promise.all(Items.map(async (item) => {
 const githubUserId = item.
GithubUserId;
 const response = await
fetch(`https://api.github.com/
user/${githubUserId}`, { method: ‘GET’
});
 const githubUserResponseBody =
await response.json();
 const GithubUsername =
githubUserResponseBody.login;

 return { [item.GithubUserId]:
GithubUsername };
 }));

 currentIdNameMappings.
forEach((mapping) => {

https://docs.github.com/en/developers/overview/about-githubs-apis
https://api.github.com/user/:id

39

The InfoQ
 eM

ag / Issue #109/ June 2023

 // append the current mapping to
the preparationData object
 preparationData = {
...preparationData, ...mapping };
 });

 scannedAllItems = !lastEvalKey;
 };

 await fs.writeFile(‘preparation-
data.json’, JSON.
stringify(preparationData));
};

Link to GitHub

Next we scan the user records (get
GithubUsername by GithubUserId for each record
using Preparation Data), and move ahead to
updating the record.

async function appendGithubUsername() {
 let lastEvalKey;
 let scannedAllItems = false;

 while (!scannedAllItems) {
 const { Items, LastEvaluatedKey } =
await dynamodbClient.scan({ TableName:
‘Users’ }).promise();
 lastEvalKey = LastEvaluatedKey;

 const updatedItems = Items.
map((item) => {
 const GithubUsername =
preparationData[item.GithubUserId];
 const updatedItem =
currentGithubLoginItem ? { ...item,
GithubUsername } : item;
 return updatedItem;
 });

 await Promise.all(updatedItems.
map(async (item) => {
 return dynamodbClient.put({
 TableName: ‘Users’,
 Item: item,
 }).promise();
 }));

 scannedAllItems = !lastEvalKey;
 };
};

Link to GitHub

And finally, like the previous process, we wrap up by
running the script on the testing environment, and
then the application environments.

Dynamo Data Transform
Once we built a robust process that we could trust
for data transformation, we understood that to do
away with human toil and ultimately error, the best
bet would be to automate it.

We realized that even if this works for us today at
our smaller scale, manual processes will not grow
with us. This isn’t a practical long-term solution
and would eventually break as our organization
scales. That is why we decided to build a tool that
would help us automate and simplify this process
so that data transformation would no longer be
a scary and painful process in the growth and
evolution of our product.

Applying automation with open source tooling
Every data transformation is just a piece of code
that helps us to perform a specific change in our
database, but these scripts, eventually, must be
found in your codebase.

This enables us to do a few important operations:

• Track the changes in the database and know
the history at every moment. Which helps to
investigate bugs and issues.

• No need to reinvent the wheel - reusing existing
data transformation scripts already written your
organization streamlines processes.

By enabling automation for data transformation
processes, you essentially make it possible for
every developer to be a data transformer. While
you likely should not give production access to
every developer in your organization, applying
changes is the last mile. When only a handful of
people have access to production, this leaves them
with validating the scripts and running them on
production, and not having to do all of the heavy
lifting of writing the scripts too. We understand

https://gist.github.com/Guy7B/48306ad4acfb1e7136b039635013d25b.js
https://gist.github.com/Guy7B/15149835c7f4b18d368c69a1960ef6b1.js

The InfoQ
 eM

ag / Issue #109/ June 2023

40

it consumes more time than needed for those
operations and it is not safe.

When the scripts in your codebase and their
execution are automated via CI/CD pipelines

other developers can review them, and basically,
anyone can perform data transformations on all
environments, alleviating bottlenecks.

Now that we understand the importance of having
the scripts managed in our codebase, we want
to create the best experience for every data-
transforming developer.

Making every developer a data transformer
Every developer prefers to focus on their business
logic - with very few context disruptions and
changes. This tool can assist in keeping them
focused on their business logic, and not have to
start from scratch every time they need to perform
data transformations to support their current tasks.

For example - dynamo-data-transform provides
the benefits of:

• Export utility functions that are useful for most
of the data transformations

• Managing the versioning of the data
transformation scripts

• Supporting dry runs to easily test the data
transformation scripts

• Rollback in the event the transformation goes
wrong - it’s not possible to easily revert to the
previous state

• Usage via CLI––for dev friendliness and to
remain within developer workflows. You can
run the scripts with simple commands like
`dynamodt up`, `dynamodt down` for rollback,
`dynamodt history` to show which commands
were executed.

Dynamo Data Transform:
Quick Installation for serverless:

The package can be used as a standalone npm
package see here.

To get started with DynamoDT, first run:

npm install dynamo-data-transform
--save-dev

To install the package through NPM (you can also
install it via…)

Next, add the tool to your serverless.yml Run:

npx sls plugin install -n dynamo-data-
transform

You also have the option of adding it manually to
your serverless.yml:

plugins:
 - dynamo-data-transform

You can also run the command:

sls dynamodt --help

To see all of the capabilities that DynamoDT
supports.

Let’s get started with running an example with
DynamoDT. We’ll start by selecting an example
from the code samples in the repo, for the sake of
this example, we’re going to use the example `v3_
insert_users.js`, however, you are welcome to test it
out using the examples you’ll find here.

We’ll initialize the data transformation folder with
the relevant tables by running the command:

npx sls dynamodt init --stage local

For serverless (it generates the folders using the
resources section in the serverless.yml):

resources:

https://github.com/jitsecurity/dynamo-data-transform#standalone-npm-package
https://github.com/jitsecurity/dynamo-data-transform/tree/main/examples/serverless-localstack/data-transformations/UsersExample

41

The InfoQ
 eM

ag / Issue #109/ June 2023

 Resources:
 UsersExampleTable:
 Type: AWS::DynamoDB::Table
 Properties:
 TableName: UsersExample

The section above should be in serverless.yml

The data-transformations folder generated with a
template script that can be found here.

We will start by replacing the code in the template
file v1_script-name.js with:

const { utils } = require(‘dynamo-data-
transform’);

const TABLE_NAME = ‘UsersExample’;

/**
 * The tool supply following
parameters:
 * @param {DynamoDBDocumentClient} ddb
- dynamo db document client https://
docs.aws.amazon.com/AWSJavaScriptSDK/
v3/latest/clients/client-dynamodb
 * @param {boolean} isDryRun - true if
this is a dry run
 */
const transformUp = async ({ ddb,
isDryRun }) => {
 const addFirstAndLastName = (item) =>
{
 // Just for the example:
 // Assume the FullName has one
space between first and last name
 const [firstName, ...lastName] =
item.name.split(‘ ‘);
 return {
 ...item,
 firstName,
 lastName: lastName.join(‘ ‘),
 };
 };
 return utils.transformItems(ddb,
TABLE_NAME, addFirstAndLastName,
isDryRun);
};

module.exports = {
 transformUp,
 transformationNumber: 1,
};

Link to GitHub

For most of the regular data transformations, you
can use the util functions from the dynamo-data-
transform package. This means you don’t need to
manage the versions of the data transformation
scripts, the package will do this work for you.
Once you’ve customized the data you’ll want to
transform, you can test the script using the dry run
option by running:

npx sls dynamodt up --stage local --dry

The dry run option prints the records in your
console so you can immediately see the results of
the script, and ensure there is no data breakage or
any other issues.

Once you’re happy with the test results, you can
remove the --dry flag and run it again, this time it
will run the script on your production data, so make
sure to validate the results and outcome.

Once you have created your data transformation
files, the next logical thing you’d likely want to
do is add this to your CI/CD. To do so add the
command to your workflow/ci file for production
environments.

The command will run immediately after the `sls
deploy` command, which is useful for serverless
applications.

Finally, all of this is saved, as noted above so if you
want to see the history of the data transformations,
you can run:

https://github.com/jitsecurity/dynamo-data-transform#data-transformation-script-format
https://gist.github.com/Guy7B/495732ecc3c9915bf160de97940e2a28

The InfoQ
 eM

ag / Issue #109/ June 2023

42

npx sls dynamodt history --table UserExample --stage
local

The tool also provides an interactive CLI for those
who prefer to do it this way.

And all of the commands above are supported via
CLI as well.

With Dynamo Data Transform, you get the added
benefits of being able to version and order your
data transformation operations and manage them
in a single place. You also have the history of your
data transformation operations if you would like
to roll back an operation. And last but not least,
you can reuse and review your previous data
transformations.

We have open-sourced the Dynamo Data
Transform tool that we built for internal use to
perform data transformations on DynamoDB and
serverless-based environments and manage these
formerly manual processes in a safe way.

The tool can be used as a Serverless Plugin and as
a standalone NPM package.

• NPM

• GitHub

Feel free to provide feedback and contribute to the
project if you find it useful.

Figure 2: Data Transformation Flow Chart

Learn how leaders like Disney+ Hotstar,
Expedia, and Fanatics are evolving their
data architecture for speed at scale.

Strategies for
Speed at Scale

LEARN WHY & HOW

https://www.npmjs.com/package/dynamo-data-transform
https://github.com/jitsecurity/dynamo-data-transform
https://www.infoq.com/url/t/8f26c72e-90db-4593-a0e2-aa358cf7a2c4/?label=ScyllaDB-eMag-Banner

43

The InfoQ
 eM

ag / Issue #109/ June 2023

Create Your Distributed Database on
Kubernetes with Existing Monolithic

by Maarit Widmann, Data Scoentist @KNIME, Alfredo Roccato, Data Science Independent Consultant

In this article, the authors explain
how correspondence analysis
functions with an example of
real social survey data. Also
provided is an implementation of
the example in KNIME Analytics
Platform, an open source
software, so that you can try out
the analysis hands-on.

Introduction
Customer segments, personality
profiles, social classes, and age
generations are examples of
effective references to larger
groups of people sharing similar
characteristics.

The characteristics that shape
these groups are often manifold
and thus require multivariate
analysis.

One way to access the variables
is via questionnaires. Because
the variables are mostly
qualitative, the questionnaires
produce categorical data with
predefined categories, for
example, on a Likert-type scale.

The starting point to analyze the
relationships between categorical
variables is a contingency table

which compares the categories
pairwise.

As the next step, correspondence
analysis (CA) performs a
multivariate analysis on multiple
contingency tables.

It projects them into a numeric
feature space, which captures
most of the variability in the data
by fewer dimensions.

What Is Simple Correspondence
Analysis?
Simple correspondence
analysis is a technique to
analyze relationships between
categorical variables and create

Understanding and Applying Correspondence
Analysis

https://en.wikipedia.org/wiki/Likert_scale
https://openlibrary.org/books/OL35735067M/L'Analyse_des_donn%C3%A9es
https://openlibrary.org/books/OL35735067M/L'Analyse_des_donn%C3%A9es
https://www.infoq.com/articles/cassandra-kubernetes-microservices/

The InfoQ
 eM

ag / Issue #109/ June 2023

44

profiles based on the projections
of the original variables to the
new dimensions that it creates.
This is useful, for example, when
analyzing and visualizing survey
data.

CA processes a two-way
contingency table that displays
the frequency distribution
between two variables. It
represents the frequency
distribution on numeric,
orthogonal dimensions. Based
on the proximity along the first
few of these dimensions, we can
visually explore the individuals’
and categories’ associations.

We can investigate, for example,
if there is a relationship
between interest in politics and
demographics data such as
age. Also, we can interpret a
dimension generated by CA as a
new, synthetic dimension, such
as “status,” that captures several
categories which together
contribute to “high” or “low”
status.

How To Perform Correspondence
Analysis
Step 1: Data collection

We start the data collection by
accessing survey data, with
records for N individuals who
have answered K questions.

As an example, we use the
European Social Survey data
from the year 2018 measuring
the attitudes, beliefs and
behavior patterns in European
nations. The data contains
metadata and answers from
49,519 individuals recorded
in 572 columns. We consider
only a subset of the variables
and perform CA to analyze the
relationships between interest in
politics, country, income, family
relationship, gender, education,
age, and internet usage.

These variables are transformed
into a two-way contingency
table (see the next step)
based on the definition of row
variables, column variables
and supplemental variables as
described below:

• Row variables refer to
variables that represent the
row IDs. In our example,
the interest in politics is the
row variable. It contains
the following four nominal
classes: not at all, hardly,

quite, and very interested. The
data for 98 participants who
didn’t provide the information
about their interest in politics
(not applicable, refusal, no
answer, don’t know) were
discarded from the analysis.

• Column variables refer to
variables that represent
the column headers. The
column variables are income,
family relationship, gender,
education, age, and internet
usage.

• Supplementary variables can
be used to interpret the
resulting profiles, but they are
not used in computing CA. In
our example, “country” is the
supplementary variable.

Note that if there were numeric
variables, these had to be
discretized before performing CA.

The survey data can be stored
in varying formats, for example,
in a csv file. Here, each row
corresponds to an individual
filling out the survey. Each
column represents a survey
question or metadata, such as
the ID of the participant. (see
Figure 1)

Figure 1. Raw survey data as a starting point of CA

https://ess-search.nsd.no/
https://en.wikipedia.org/wiki/Contingency_table
https://en.wikipedia.org/wiki/Contingency_table

45

The InfoQ
 eM

ag / Issue #109/ June 2023

Notice that the column and row
variables may need to be binned
or encoded to help give a better
understanding of the CA results.
For example, the survey data
reports 10 income deciles, which
we encoded to seven income
classes: very low, low, mid low,
middle, mid high, high, and very
high.

Step 2: Data preprocessing
In data preprocessing, we create
a two-way contingency table that
shows the frequency distribution
of the row and column variables.

Figure 2. shows a part of the
contingency table for the survey
data in our example.

In the first row, it shows how
the 17,837 survey participants
hardly interested in politics are
distributed into two categories,
male and female, as well as into
the seven categories describing
family income. The more column
variables there are, and the
more categories in each column
variable, the wider the table.

The transformation of the raw
data into a contingency table is
required to perform CA via the
algorithms available, for example,
in R software. In the next step,
we explain how CA functions
under the hood, although it is not

necessary for executing such
algorithms.

Step 3: Computing CA
Projecting the data into new
numeric dimensions in CA works
the same way as in principal
component analysis (PCA),
by sequentially constructing
orthogonal dimensions of the
data. This can be performed by
singular value decomposition.

However, while in PCA, the
decomposition is based on
maximizing the variance; in CA
it is based on maximizing the
inertia.

For each row variable i, inertia
is calculated with the following
formula:

Inertia (i/GJ) =fi.d
2

x
2(i,GJ)

Where fi. is the weight, i.e., the
marginal sum of row variable
i, and d2

x
2(i,GJ) is the chi-

squared distance from the
mean profile defined by the
marginal probabilities of column
variables J. The total inertia is
calculated by summing up these
inertias for all row variables I.
In the extreme case, if the row
reflects the mean profile, the
inertia of that row variable is
zero.

For column variables, the inertia
is the sum of inertias of their
categories j:

Inertia (j/GI) = f.j d
2

x
2(j,GI),

Where f.j is the weight, the
marginal sum of column
variable j, and d2

x
2(j,GI) is the chi-

squared distance from the mean
profile defined by the marginal
probabilities of I row variables.

The sum of inertias of all column
variables j produces the same
total inertia as the sum of
inertias of all individuals i.

Step 4: Interpreting the results
In this step, we explain how
to interpret the results of CA
visually in a scree plot and biplot
and numerically via the output
statistics.

Scree plot

To compare the percentages
of total inertia that the new
dimensions explain, we can take
a look at a scree plot as shown in
Figure 3

In our example, the first
dimension explains 89.4% of
the inertia, while the second
dimension explains 10.19% of it.
Together, the first two

Figure 2. A two-way contingency table showing the preprocessed survey data before computing

https://en.wikipedia.org/wiki/Singular_value_decomposition
https://www.youtube.com/playlist?list=PLnZgp6epRBbTgO-l-6hLAKTstW7WSGh8A
https://www.youtube.com/playlist?list=PLnZgp6epRBbTgO-l-6hLAKTstW7WSGh8A
https://en.wikipedia.org/wiki/Chi-squared_test
https://en.wikipedia.org/wiki/Chi-squared_test

The InfoQ
 eM

ag / Issue #109/ June 2023

46

dimensions explain 99.5% of the
total inertia.

Biplot
Next, we project the row and
column variables into the first
two dimensions and explore
them visually in a biplot. (see
Figure 3)

The biplot shows the first two
dimensions on the x- and y-axis.
It is possible to show the row,
column and supplementary
variables along the same axes
using transition formulas
between the coordinates of row,
column and supplementary
variables.

Proximity in the feature space
indicates positive association.
For example, the group of
individuals who are very
interested in politics (PI: Very) is
close to the category of very high
income (FI:VeryHigh), and these
variables are therefore strongly
associated. Also, the categories
of very high income and MA level
education (EL: V2) are strongly
associated. This implies that
people with very high income
have MA level education more
often than an average person
from any income class.

Also, the closer the angle
between two groups/categories
is to 90°, the less they are
associated. For example, the
categories “IU: Everyday” and
“Age: 45-54” lie on the x- and
y-axis, respectively. Therefore,
this association is very weak.

Figure 3. Scree plot showing the percentages of inertia captured by the
new dimensions generated by CA

Figure 4. Biplot showing the row, column and supplementary variables in
two-dimensional space

https://en.wikipedia.org/wiki/Biplot

47

The InfoQ
 eM

ag / Issue #109/ June 2023

The contingency table in Figure 5
below confirms this: There is little
deviation between the observed
and expected value.

The categories of the
supplementary variable, i.e., the

countries, help to interpret
the dimensions. It seems
that Switzerland (CN:CH) and
the Nordic countries such as
Denmark and Sweden (CN:DK
and CN:SE) are strongly
associated with the first

dimension. Instead, the Baltic
countries such as Estonia and
Latvia (CN:EE and CN:LV) are
strongly associated with the
second dimension.

Statistics
Finally, we can inspect the
groups, categories and new
dimensions by looking at the
output statistics. The table in
Figure 6 shows a sample of the
output statistics of CA for our
example:

The table contains the
variables as row IDs and the
statistics as column headers.
For supplementary columns,
there are no statistics, except
dimensions 1 and 2, because
they don’t contribute to the
dimensions. Dimension 1 seems
to relate positively to high levels
of interest in politics, family
income, education, age group,
etc. Therefore, Dimension 1,
which is highly important, could
be interpreted as a “status”
dimension (high vs. low).

In the next table we explain
what the output statistics of CA
quantify and state an example
question that we can answer by
them.

Next, we show how to perform
CA and produce the results
introduced above in KNIME
Analytics Platform.

Practical Implementation of CA
In this section, we will introduce
how to perform the example

Figure 5. A sample of a contingency table between analyzed variables

Figure 6 . The output statistics of CA

The InfoQ
 eM

ag / Issue #109/ June 2023

48

application of this article,
analyzing social survey data via
CA, in KNIME Analytics Platform.
The KNIME workflow below
shows the steps.

You can download the
Exploring categorical data
via Correspondence Analysis
workflow from the KNIME Hub
and open it in KNIME Analytics

Platform. KNIME Analytics
Platform is open source and can
be downloaded from the KNIME
website.

The workflow progresses
in four steps: data reading,
preprocessing, descriptive
analysis, and CA.

First, it accesses the data as a
CSV file, which stores the data
as shown in Figure 1. Second,
it accesses the dictionaries
that contain the descriptions
of the codes to replace them
in the data. After that, it bins
some of the variables into fewer
categories. Then, it creates the
contingency table as shown in
Figure 2.

Lastly, it computes the CA and
produces a view that displays the
scree plot, biplot, and statistics
table (Figures 3-4 and Table 1).
It performs CA using functions of
the R software, in particular, the
ca () function of the ca package.
For the views, it uses the function
ggplot () of the ggplot2 package.
The KNIME Interactive R
Statistics Integration allows us to
write the script within the visual
workflow.

In addition, it displays a bar chart
and contingency table to explore
the frequency distributions in the
data in parallel to performing CA
(Figure 5).

Summary
In this article, we introduced
correspondence analysis,

Figure 7. Example of KNIME workflow performing CA on European Social
Survey data. You can download the workflow from then KNIME Hub.

Table 1. Definitions and interpretations of the output statistics produced
by CA

https://kni.me/w/NpFKwwOmYluLxtM1
https://kni.me/w/NpFKwwOmYluLxtM1
https://www.knime.com/downloads
https://www.knime.com/downloads
https://cran.r-project.org/web/packages/ca/ca.pdf
https://ggplot2.tidyverse.org/
https://kni.me/e/6cbZ6X3DrLrH96WD
https://kni.me/e/6cbZ6X3DrLrH96WD
https://kni.me/w/NpFKwwOmYluLxtM1

49

The InfoQ
 eM

ag / Issue #109/ June 2023

which analyzes associations
in categorical data, and
showed how it helps to analyze
categorical data beyond a
contingency table by projecting
the categories of the variables
onto new numeric dimensions.
You can find these associations
based on the proximity of the
variables in a reduced feature
space that could not otherwise
be discovered through a pairwise
analysis.

The InfoQ
 eM

ag / Issue #109/ June 2023

50

Read recent issues

Platform Engineering 101:
What You Need to Know
about This Hot New Trend

Hard-Won Lessons from the
Trenches: Failure Modes of
Platform Engineering
— And How to Avoid Them

Step One to Successfully
Building Your Platform:
Building it Together

FACILITATING THE SPREAD OF KNOWLEDGE AND INNOVATION IN PROFESSIONAL SOFTWARE DEVELOPMENT

Principles and Best Practices

The Platform
Engineering Guide

 The InfoQ eMag / Issue #107 / February 2023

Building & Operating
High-Fidelity Data
Streams

Migrating Netflix’s Viewing
History from Synchronous
Request-Response to Async
Events

Streaming-First
Infrastructure for Real-
Time Machine Learning

FACILITATING THE SPREAD OF KNOWLEDGE AND INNOVATION IN PROFESSIONAL SOFTWARE DEVELOPMENT

Modern Data
Architectures,
Pipelines, & Streams

 The InfoQ eMag / Issue #105 / October 2022

.NET InfoQ Trends
Report 2022

Software Architecture &
Design InfoQ Trends Report
2022

DevOps and Cloud
InfoQ Trends Report
2022

FACILITATING THE SPREAD OF KNOWLEDGE AND INNOVATION IN PROFESSIONAL SOFTWARE DEVELOPMENT

 The InfoQ eMag / Issue #106 / December 2022

The InfoQ Trends
Reports 2022

The Platform Engineering
Guide: Principles and Best
Practices

Platform Engineering has
quickly become one of the
hottest topics in DevOps. The
explosion of new technologies
has made developing
software more interesting but
has substantially increased
the number of things that
development teams need to
understand and own.

Modern Data Architectures,
Pipelines, & Streams

In this eMag, you’ll find up-
to-date case studies and
real-world data architectures
from technology SME’s and
leading data practitioners in
the industry.

The InfoQ Trends Reports
2022

The InfoQ trends reports
provide a snapshot of
emerging software technology
and ideas. We create the
reports and accompanying
graphs to aid software
engineers and architects in
evaluating what trends may
help them design and build
better software. Our editorial
teams also use them to
help focus our content on
innovator and early adopter
trends.

InfoQInfoQ@InfoQInfoQ

https://www.infoq.com/minibooks/platform-engineering-guide/
https://www.infoq.com/minibooks/modern-data-architectures/
https://www.infoq.com/minibooks/2022-infoq-trends-reports/
https://www.infoq.com/minibooks/platform-engineering-guide/
https://www.infoq.com/minibooks/modern-data-architectures/
https://www.infoq.com/minibooks/2022-infoq-trends-reports/
https://www.infoq.com/minibooks/data-engineering
https://www.infoq.com/minibooks/modern-data-architectures/
https://www.infoq.com/minibooks/2022-infoq-trends-reports/
https://www.infoq.com/minibooks/modern-data-architectures/
https://www.infoq.com/minibooks/2022-infoq-trends-reports/
https://www.infoq.com/minibooks/platform-engineering-guide/

